

Operating Instructions inertialSENSOR ACC5703

ACC5703

3-axes acceleration sensor

MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße 101

73037 Göppingen / Germany

Tel. +49 (0) 7161 / 98872-300 Fax +49 (0) 7161 / 98872-303 eltrotec@micro-epsilon.com www.micro-epsilon.com

Contents

1. 1.1 1.2 1.3 1.4 1.5	Safety Symbols Used Warnings Notes on CE Marking Intended Use Proper Environment.	 5 5 6 6 7
2. 2.1 2.2 2.3	Functional Principle, Technical Data Functional Principle Structure and Electrical Connection Technical Data	 8 8 9
3. 3.1 3.2	Delivery Unpacking, Included in Delivery Storage	 11 11 11
4. 4.1 4.2 4.3 4.4 4.5 4.6	Installation and Assembly. Sensor Cable Sensor Pin Assignment. Analog Output. 4.4.1 Continuous Operation Mode. 4.4.2 Switching Operation Mode. Configuration of Sampling Rate and Low- and High-pass Filter Digital Output RS485	12 12 12 14 15 16 17 19 20
5.	Operation	21
6.	Liability for Material Defects	22
7.	Service, Repair	22
8.	Decommissioning, Disposal	22

Appendix

A 1	Optional Accessories	
A 2	Factory Settings	23
A 3	Software	
A 3.1	Sensor Finder	24
A 3.2	Measurement Menu	
	A 3.2.1 Main View	
	A 3.2.2 Start/Stop	
	A 3.2.3 Signal Processing	
	A 3.2.4 CSV Output	
A 3.3	Frequency Analysis (FFT) Menu	
A 3.4	Single Value Menu	
A 3.5	Settings Menu	
	A 3.5.1 Filter Configuration	
	A 3.5.2 Measuring Range	
	A 3.5.3 Output 1, 2, 3	
A 3.6	Into Menu	
Δ Δ	Digital Interface BS485	41
$\Delta 4 1$	Hardware Interface	
A 4 2	Protocol	
, , , , <u>, ,</u>	A 4.2.1 Beading Measurement Data	
	A 4.2.2 Example Transmission of a Measurement Value	

1. Safety

System operation assumes knowledge of the operating instructions.

1.1 Symbols Used

The following symbols are used in these operating instructions:

	Indicates a hazardous situation which, if not avoided, may result in minor or moderate injury.
NOTICE	Indicates a situation that may result in property damage if not avoided.
→	Indicates a user action.
i	Indicates a tip for users.

1.2 Warnings

Connect the power supply and the display/output device according to the safety regulations for electrical equipment.

- > Risk of injury
- > Damage to or destruction of the sensor

NOTICE

The supply voltage must not exceed the specified limits.

> Damage to or destruction of the sensor

No sharp or heavy objects should be allowed to affect the cables. Avoid folding the cables. Do not bend more tightly than the minimum bending radius of the cables.

> Damage or destruction of the cable, failure of the measuring device

Do not crush the cable. Protect the sensor cable against damage.

> Damage or destruction of the cable, failure of the measuring device, data loss

Ensure that the coupling nuts of the connectors are firmly tightened.

> Damage or destruction of the cable, failure of the measuring device

1.3 Notes on CE Marking

The following apply to the ACC5703:

- EU Directive 2014/30/EU
- EU Directive 2011/65/EU

Products which carry the CE mark satisfy the requirements of the EU directives cited and the European harmonized standards (EN) listed therein. The EU Declaration of Conformity is available to the responsible authorities according to EU Directive, article 10, at:

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Straße 15

94496 Ortenburg / Germany

The measuring system is designed for use in industrial environments and meets the requirements.

1.4 Intended Use

The ACC5703 is designed for use in industrial applications. It is used for

- measuring acceleration
- measuring vibration of manoeuvrable components
- The system must only be operated within the limits specified in the technical data, see 2.3.
- The sensor must be used in such a way that no persons are endangered or machines and other material goods are damaged in the event of malfunction or total failure of the sensor.
- Take additional precautions for safety and damage prevention in case of safety-related applications.

1.5 Proper Environment

- Protection class: 1 IP 67
- Temperature range:
 - Operation: -40 ... +85 °C (-40 ... +185 °F)
 - Storage: -40 ... +85 °C (-40 ... +185 °F)
- Ambient pressure: Atmospheric pressure

1) With M12 connector

2. Functional Principle, Technical Data

2.1 Functional Principle

With the principle of an acceleration sensor, forces that change the velocity of an object are measured and transformed into an electric output signal.

Therefore the sensor is mounted on the maneuverable component. The expected moves correspond to the measurement axes. The included MEMS-Element converts the acceleration into a usable electric signal.

Fig. 1 Three axes acceleration sensor

2.2 Structure and Electrical Connection

The sensor is ready for operation immediately after connecting the power supply and will provide the acceleration as electric value at the analog output.

The ACC5703 is available with analog (current, voltage and switching output) as well as RS485 interface for configuring of the sensor using the software.

Power supply and signal output are connected through a 8-contact (M12) connector on the sensor's housing.

2.3 Technical Data

Model		ACC5703-8
Number of axes		3
Measuring range		\pm 0.1 g \pm 8 g (configurable) ¹
Desclution	Digital	≤ 0.016 mg
Resolution –	Analog	Current: \leq 0.24 mg / voltage \leq 0.31 mg
Noise		Typ. 30 μg / √Hz
Sensitivity (analog output)		\leq 80 mA/g or \leq 20 V/g ¹
Zero		12 mA or 2.5 V
Linearity		Typ. 0.45 % FSO
Frequency range		0 1000 Hz (configurable)
Sampling rate		Up to 4 kHz ²
Cross axis sensitivity		1 % FSO
Temperature stability		Typ. ±0.2 mg / K
Supply voltage		5 32 VDC
Power consumption		< 3 W
To man a week was were as	Operation	-40 +85 °C (-40 +185 °F) ³
Temperature range –	Storage	-40 +85 °C (-40 +185 °F)
Digital interface		RS485 ⁴
Analog output		4 20 mA (max. 390 Ω) and 0.5 4.5 V (min. 1 k Ω) (configurable)
Switching output		0 / 5 V (min. 1 KΩ)
Protection class		IP 67 (connected)

Model	ACC5703-8
Shock	DIN EN 60068-2-27
SHOCK	(1500 g, 0.5 ms, half-sine shock, 3 x in each direction)
Weight	Approx. 250 g
Material	Die-cast aluminum
Installation	Screw connection via mounting holes (M4)
Connection	M12 connector, 8-pin
Start-up time	< 500 ms

FSO = Full Scale Output

All specifications valid at a room temperature of +25 °C (+77 °F)

1) In order to achieve maximum sensitivity, continuous adjustment of the measuring range is possible.

(Examples: Measuring range ±0.1 g \rightarrow Sensitivity 80 mA/g or 20 V/g; Measuring range ±8 g \rightarrow Sensitivity 1 mA/g or 0.25 V/g)

2) The digital interface RS485 is active only up to a sampling rate of 1000 Hz. At higher rates only the analog output is active.

3) Customer-specific designs up to +125 °C

4) Compatible with the MICRO-Epsilon interface modules IF1032 (Ethernet) and IF2030 (PROFINET)

Article designation

3. Delivery

3.1 Unpacking, Included in Delivery

- 1 Sensor ACC5703
- 1 Operating Instructions
- Carefully remove the components of the measuring system from the packaging and ensure that the goods are forwarded in such a way that no damage can occur.
- Check the delivery for completeness and shipping damage immediately after unpacking.
- If there is damage or parts are missing, immediately contact the manufacturer or supplier.

Optional accessories are available in the appendix, see A 1.

3.2 Storage

 Temperature range storage:
 -40 ... +85 °C (-40 ... +185 °F)

 Humidity:
 5 - 95 % (non-condensing)

4. Installation and Assembly

4.1 Sensor Cable

NOTICE

No sharp or heavy objects should be allowed to affect the cables. Avoid folding the cables. Do not bend more tightly than the minimum bending radius of the cables.

> Damage or destruction of the cable, failure of the measuring device

Do not crush the cable. Protect the sensor cable against damage.

> Damage or destruction of the cable, failure of the measuring device

Ensure that the coupling nuts of the connectors are firmly tightened.

> Damage or destruction of the cable, failure of the measuring device

4.2 Sensor

The sensor is fixed into place with the help of two through bores for M4 screws.

The sensor is mounted at the manoeuvrable component. The orientation of the measurement axes x, y, z is to be respected in relation to the expected moves of the component.

Fig. 2 Installation orientation, measurement axis

Fig. 3 Dimensional drawing, dimensions in mm (inches), not to scale

4.3 Pin Assignment

Connect the open cable end in accordance with the color coding, see Fig. 4.

Pin ¹	Color ²	Description	45
1	White	Output channel 2	45 °
2	Brown	GND (Output)	2
3	Green	Output channel 3	
4	Yellow	RS485+	
5	Gray	Output channel 1	$\sqrt{50}$
6	Black/pink	GND (Supply)	6 1
7	Blue	RS485-	•
8	Red	Supply +	View of solder pin side, 8-pin, A-coded, female connector

Fig. 4 Pin assignment of the 8-pin, A-coded, female connector

- 1) SA Connector
- 2) PCx/8-M12 Power supply and output cable, see A 1.
- 3) Factory setting of output channel 1: "x", 2: "y", 3: "z"

4.4 Analog Output

The sensor makes the acceleration value available as analog output variable either as current or voltage value on separate pins.

Three output channels can be configured independently with the following settings.

- Analog channel 1 (x, y, z)
- Analog channel 2 (x, y, z)
- Analog channel 3 (x, y, z)

Each output channel can be operated in continuous operation mode or switching operation mode.

Selection of measurement axis (x, y, z) at every channel possible

Off (zero output)

Continuous mode, current 4 - 20 mA

Continuous mode, voltage 0.5 - 4.5 V

Switching mode, voltage 0 - 5 V

Fig. 5 Operation modes of the analog output channels

You can switch between the continuous operation mode and the switching operation mode, see A 3.5.3.

4.4.1 Continuous Operation Mode

The sensor makes the acceleration value available as analog output variable either as current or voltage value on separate pins, depending on the configuration using the sensorTOOL software of Micro-Epsilon.

In this process, the symmetrical measurement range in the unit g is scaled to the respective analog range.

The sensitivity increases with decreasing measurement range as only a small acceleration range is scaled to the same output range, see Fig. 6, see Fig. 7.

Fig. 6 Scaling of the acceleration measurement range to analog output variable current or voltage

Measuring range [g]	Resolution digital RS485 [mg]	Resolution analog current [mg]	Resolution analog voltage [mg]	Sensitivity analog current [mA/g]	Sensitivity analog voltage s[V/g]
≤ ±2	0.004	0.06	0.076	≥ 4.0	≥ 1.0
$\leq \pm 4$	0.008	0.12	0.15	≥ 2.0	≥ 0.5
≤ ±8	0.016	0.24	0.31	≥ 1.0	≥ 0.25

Fig. 7 Examples of resolution (mg) and sensitivity (mA/g) depending on the configured measurement range

4.4.2 Switching Operation Mode

The switching mode, configurable via Software, switches the analog voltage output to 5 V when the acceleration value reaches the trigger-level "on-level" and switches back to 0 V when the acceleration value falls below the "off-level".

Fig. 8 Switching operation mode, response time $< 10 \,\mu$ s, see Fig. 9

The selection of measurement axis (x, y, z) (vector addition (xy, xz, yz, xyz)) is possible at every channel.

Mode Immediately:

Select this setting to switch the output immediately when the switching levels are exceeded or not reached, see Fig. 8 (left).

The switching status has a minimum hold time. The minimum hold time of the switching status depends on the sampling rate set, see Fig. 10.

Mode After Time:

Choose the delay time tv for which the switching level must be permanently exceeded or not reached in order to switch the output, see Fig. 8 (right).

The delay time t_v determines the switch-on delay and the switch-off delay of the switching status to the same degree, see Fig. 8 (right). The switching status has a minimum hold time. The minimum hold time of the switching status depends on the sampling rate set, see Fig. 10.

That functionality can be used, for example, as safety feature which switches off a machine if high vibrations occur. The trigger-levels take effect symmetrically, i.e. in the positive and negative acceleration range at the same absolute value.

The output values at the digital interface in switching mode are either zero or equal to the "on-level" as long as the trigger condition is met.

The duration of the rising and falling edge is $t < 10\,\mu\text{s},\,\text{see}$ Fig. 9.

The minimum hold time of the switching status depends on the selected sampling rate, see Fig. 10.

Fig. 9 Rising and falling edge of the voltage output in switching mode, $t < 10\,\mu s$

Sampling rate (Hz)	Minimum hold time of switching status (ms)
4000	25
2000	25
1000	25
500	26
250	28
125	32
62.5	32
31.25	32
15.625	64
7.8125	128
3.90625	256

Fig. 10 Minimum hold time of the switching status

4.5 Configuration of Sampling Rate and Low- and High-pass Filter

Parameters, like sampling rate or filter frequencies, are adaptable in a wide range in order to match the respective application.

The high-pass is configured to reduce influences of low frequencies especially to hide earth acceleration. The low-pass is configured to hide disturbances at high frequency.

Fig. 11 Configuration of filter to reduce influences

The high-pass is deactivated by default, see A 2..

Low-pass f LP [Hz]	Sampling rate [Hz]	Response time [ms]	High-pass f _{нP} [Hz]
(configurable)			(optional, configurable)
1000	4000 ¹	0.88	0.00952 9.88
500	2000 ¹	1.25	0.00476 4.94
250	1000	2.03	0.00238 2.47
125	500	3.51	0.00119 1.235
62.5	250	6.52	0.000595 0.6175
31.25	125	12.59	0.0002975 0.30875
15.625	62.5	24.43	0.00014875 0.154375
7.813	31.25	47.84	7.4375e-5 0.0771875
3.906	15.625	96.5	3.71875e-5 0.03859
1.953	7.813	189.83	1.859e-5 0.0193
0.977	3.906	384.56	9.296e-6 0.009648

Different low-pass filter settings, see Fig. 12, cause the sampling rate and response time to change respectively. The chosen low-pass frequencies furthermore have influence on the available high-pass filter options.

Fig. 12 Table dependency between sampling rate and low- and high-pass settings

1) Digital interface RS485 is enabled only up to 1000 Hz sampling rate. At higher rates only the analog output is active.

4.6 Digital Output RS485

You can read out the measured data in digital form using the RS485 interface in a sampling rate up 1000 Hz. For higher sampling rates only the analog operation is possible. The PC software sensorTool, see A 3, permits configuration of the sensor and the visualization of the measured data. The bus protocol required to read out the measured data in your own applications is described in the appendix, see A 4.

Additionally, you can use the IF1032/ETH interface converter by MICRO-EPSILON MESSTECHNIK GmbH & Co. KG, to read out the measured data via Ethernet.

5. Operation

The measurement device is already calibrated when delivered. Calibration by the user is not necessary. After connection to the operating voltage, the sensor is immediately ready for operation and independently initiates the measurement, see Fig. 13.

Fig. 13 Reference directions for the acceleration measurement based on the example of the acceleration of gravity

Additionally, the digital RS485 interface is ready to react to enquiries by the master (periodic retrieval of measured data). For sensor configuration please use the power supply and output cable with USB/RS485 converter, see A 1, as well as the sensor-TOOL software of MICRO-EPSILON, see A 3.

The sensor requires a warm-up time of approx. 10 minutes after connection of the voltage supply.

6. Liability for Material Defects

All components of the device have been checked and tested for functionality at the factory. However, if defects occur despite our careful quality control, MICRO-EPSILON or your dealer must be notified immediately.

The liability for material defects is 12 months from delivery.

Within this period, defective parts, except for wearing parts, will be repaired or replaced free of charge, if the device is returned to MICRO-EPSILON with shipping costs prepaid. Any damage that is caused by improper handling, the use of force or by repairs or modifications by third parties is not covered by the liability for material defects. Repairs are carried out exclusively by MICRO-EPSILON.

Further claims can not be made. Claims arising from the purchase contract remain unaffected. In particular, MICRO-EPSILON shall not be liable for any consequential, special, indirect or incidental damage. In the interest of further development, MICRO-EPSILON reserves the right to make design changes without notification. For translations into other languages, the German version shall prevail.

7. Service, Repair

If the sensor is defective, please send us the affected parts for repair or exchange.

If the cause of a fault cannot be clearly identified, please send the entire measuring system to:

MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße 101

73037 Göppingen / Germany

Tel. +49 (0) 7161 / 98872-300 Fax +49 (0) 7161 / 98872-303 eltrotec@micro-epsilon.com www.micro-epsilon.com

8. Decommissioning, Disposal

Remove the power and output cable from the sensor.

Incorrect disposal may cause harm to the environment.

Dispose of the device, its components and accessories, as well as the packaging materials in compliance with the applicable country-specific waste treatment and disposal regulations of the region of use.

Appendix

A 1 Optional Accessories

Designation	Description
PC3/8-M12	Power supply and output cable, 3 m long
PC5/8-M12	Power supply and output cable, 5 m long
PC10/8-M12	Power supply and output cable, 10 m long
PC10/8-M12	Power supply and output cable, for drag chain use, 10 m long
PC15/8-M12	Power supply and output cable, 15 m long
PC2/8-Sub-D	Power supply and output cable with USB / RS485 converter, 2,8 m long
IF1032/ETH	Interface module ME Ethernet/EtherCAT
IF2030/PNET	Interface component for ProfiNet

A 2 Factory Settings

Low-pass filter:	62,5 Hz
Sampling rate:	250 Hz
High-pass filter:	Disabled
Measurement range:	±2 g
Sensitivity:	4 mA/g or 1 V/g
Output signal:	4 20 mA
Active axes:	Channel 1: "x", channel 2: "y", channel 3: "z", see Fig. 2

A 3 Software

The sensorTOOL offers you a documented driver software. It is available at www.micro-epsilon.com.

A 3.1 Sensor Finder

Connect the sensor to a free USB port on your PCs and connect the power supply.

Activate the sensorTOOL.

The following view appears:

🔍 SensorTool 1.2.0 - SensorTool	- 🗆 X
	(31)
	Sensor TOOL MICRO-EPBILON
이 같은 것 같아요. 것은 집안에서 모두는 것이라.	English 📀
Connections	Search Results
Sensor group	
inertialSENSOR 👻	
Sensor type	
inertialSENSOR ACC5703 🔹	
Settings	
Search serial interfaces	
Quick scan RS485	
Enable logging	
Load sensor protocol	
Ready	

Fig. 14 First interactive site after calling the sensorTOOL

Click the Configure Serial Interface button to set the basic settings for the serial interface.

Fig. 16 Window Change Serial Configuration - sensorTOOL

The baud rate cannot be changed.

A sensor address can be assigned for the sensor.

Start the data acquisition/configuration by clicking Start Data Acquisition or the sensor picture, see Fig. 15.

The following window appears, see Fig. 17.

A 3.2 Measurement Menu

To check your measurements, a simple data acquisition, see Fig. 17, is available.

् SensorTool 1.2.0 - SensorTool									- 0	×
										3I
Connections 🖉 Moscurement	Cingle Value	10 E	roquonau Analusia (Cottings	0 In	60 ()	sensor I		EPSILON
Connections Weastrement	Single value		requency Analysis (rri) ©	settings	0 11			English	S
inertialSENSOR ACC5703	Acceleration X	(g)	Acceleration Y (g)	Aco	eleration Z (g)					
Baud rate: 230400	0.006		0.009		0.995				R N	
Port number: COM3	1 142 -									
Serial number controller: 24	1.000									
→ Disconnect	-									
	Y 0.500-									
Data Acquisition 💿										
DRQ DRQ										
<u>Luni</u>	0.000									
	14:19:00.426	14:19	9:05.000 14:19:1	0.000	14:19:15.000	14:19:20.	000 14:1	9:25.000	14:19:30	0.426
Signal Processing		1			*					
Subsample Trigger Master		- New								
Disabled 👻										
	Name	Colo	or Min	Max	Peak-to-peak	Mastering	Current value	SI-unit	Number of d	digits
CSV Output	Acceleration X		0.005	0.010	0.005		0.006	g	3	÷
	Acceleration Y		0.007	0.014	0.007		0.009	g	3	÷
	Acceleration Z		0.982	1.007	0.024		0.995	g	3	÷
	State State		0.000	1.000	1.000		0.000		3	•
Format Point Separator Semicolon	Counter		742647.000	810956.00	68309.000		810986.000		3	÷
ppData\Local\Micro-Epsilon\Sensor-Tools										
Open Explorer 🗸 🗸									1	
Ready										0

Fig. 17 View data acquisition menu

A 3.2.1 **Main View**

inertialSENSOR ACC57	03	0
Baud rate:	230400	
Port number:	COM3	
Serial number controller:	24	
ightarrow Disconnect		

Fig. 18 Disconnection

By clicking the Disconnect button you return to the sensor search, see Fig. 14.

Click the Reset Y-Scale button, to reset the Y-scale to initial settings (e.g. after zooming).

Click the Jump to Head button to display the current signal course.

A 3.2.2 Start/Stop

Start the data acquisition by clicking the Start button, see Fig. 19.

The acquisition is completely restarted and the record stopped before is deleted.

Stop the data acquisition by clicking the Stop button, see Fig. 20.

0

Fig. 19 Start Fig. 20 Stop

A 3.2.3 Signal Processing

Signal Pro	6		
Subsample	Trigger	Master	
Disabled			•

Fig. 21 Signal processing

You can select the following options for signal processing:

Measurement	Signal processing	Subsample	Disabled	Deactivated; basic settings
			Sample-based	Number of samples is adjustable, every xth measurement is recorded.
			Time-based	Time can be set in milliseconds ¹ .
		Trigger	Disabled	Deactivated; basic settings
			Continuous	Manual trigger
			One-shot (sample-based)	Sample can be set; records the signal course ac- cording to the set samples; the more samples, the longer the course.
			One-shot (time-based)	Milliseconds can be set; records the signal course according to the time set.
		Master	Master now	Sets the master, see Fig. 24.
			Reset	Resets the master.

1) For example every 5000 ms: The signal course displayed is updated after this period has elapsed.

A 3.2.4 CSV Output

-
-
Point 👻
Semicolon 🔻

Fig. 22 CSV output

	Click the button to start acquiring the measurement data.
Stop Protocol	Click the button to stop recording.
	Click the button to save the selected measurement value.
Cancel Snap	Click the button to cancel the recording.

	Fields with gray	Measurement	CSV output	Format	Point / Comma		
backgrounds re-				Separator	Comma / Semicolon / Tabulator		
	quire a selection.	ppData\Local\Micro-Epsilon\Sensor-Tools					
/alue	Fields with dark	Open Ex	plorer				

Fig. 23 Open Explorer

entry of a value.

Name	Color	Min	Max	Peak-to-peak	Mastering	Current value	SI-unit	Number of digits
Acceleration X		0.005	0.010	0.005		0.008	g	3
Acceleration Y		0.007	0.013	0.006		0.010	g	3
Acceleration Z		0.990	1.001	0.011		0.996	g	3
State		0.000	0.000	0.000		0.000		3
Counter		1423619.000	1498859.000	75240.000		1498908.000		3

Name	Show or hide signal curves of the sensors used.
Color	Change the color settings of the single signal courses.
Mastering	By activating the Mastering checkbox you can manually enter the master value. Master now in the Data Acquisition > Signal Processing menu in the Master tab menu sets the master value, see Fig. 21.

Fig. 24 Depiction and description of data acquisition table

A 3.3 Frequency Analysis (FFT) Menu

To analyze your measurements, a simple frequency analysis, see Fig. 25, is available.

Frequency Analysis (FFT)	
Window Size [Samples]	
512	-
Maxima Count	
2 Show Maxima	
Minimum distance between maxima [Hz]	
20,00	-

Fig. 25 Frequency Analysis

Frequency analysis (FFT)	Window size (samples)	16 32 64 128 256 512 1024 2048	This setting specifies the window size (number of sensor values) over which the FFT is calculated. Window size high \rightarrow higher frequency resolution of the FFT, but slower to calculate; Window size low \rightarrow lower frequency resolution of the FFT, but faster to calculate
	Maxima count	1/2/3/4/5	Specifies the number of maxima that are calculated and thus can be displayed.

The Show Maxima checkbox graphically frames the maxima. The minimum distance between the maxima [Hz] indicates the minimum distance in [Hz] which should be between two fields with gray maxima.

Fields with gray backgrounds require a selection.

A 3.4 Single Value Menu

Fig. 26 Single value menu

Appendix | Software

Single value	Font size	1 30	-
	Number of digits	03	-
		Output 1	Selection of the output to be displayed.
		Output 2	The outputs are set in the Settings
	Channel	Output 3	- <i>Menu, see A 3.5.3.</i>
		State	Not supported
		Counter	Not supported

Fields with gray backgrounds require a selection.

A 3.5 Settings Menu

0	SensorTool 1.2.0 - Sens	orTool													×
												senso	or T(
0	Connections	8	Measureme	nt 👁	Single Value	Frequency	Analysis (FFT)	0	Settings	0	Info 🔺 🕨			English	0
ir -	Baud rate: Port number: Serial number cor	ACC	230400 COM3 : 24		Filter Configu Low-pass filter (I Data rate (Hz) High-pass filter (I Measuring rar Current measurin Current scale for Sensitivity: ImA/, 4mA = 89 0.5V = 89 Digital resolutior	ration Hz) (Hz) ng range (g) tr the analog output (g 0.25V/g 20mA = +8g 45V = +8g m: 256000LSB / g	62.5 ; Disabled ± 8,00	 ▼ 250 ▼ 	Output 2 Type of the ar Current axis Vector additic Threshold A (Threshold B (Mode Delay time t1 That means d	nalog output g) g) (ms) elay (number	Current outp	y x y 0,90 0,20 Immediately 0	▼ ▼ Z × × × × × ×		^
					Type of the analy Current axis Vector addition Threshold A (g) Threshold B (g) Mode Delay time t1 (m That means dela	s) sy (number of sample	output (4-20mA) x y x y x y x y x y x y x y x y x y y y	 ▼ ▼ ▼ ▼ ▼ ▼ ▼ 0 	Type of the ar Current axis Vector additic Threshold A (Threshold B (Mode Delay time t1 That means d	naloq output in g) g) (ms) elay (number	Current outp	x y 1 x y 1 0,90 1 1 1 0,20 1 1 1 1 1 0 1 1 1	 ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ 0 		v
•	Ready													1	0

Fig. 27 Settings menu

	•		
Filter configura- tion	Low-pass filter (Hz)	0,977/ 1,953/ 3,906/ 7,813/ 15,625/ 31,25/ 62,50/ 125/ 250/ 500/ 1000	Set the desired low-pass frequen- cy between 0.977 Hz and 1000 Hz. Specifies the maximum frequency of accelerations that the sensor should still process. The lower the low-pass frequency, the greater the time delay of the measurement signal. The low-pass frequency si- multaneously affects the sampling rate of the sensor. The higher the low-pass frequency, the higher the sampling rate (up to 40000 Hz).
	Data rate (Hz)	Value	The value depends on the settings of the low-pass filter.
	High-pass filter (Hz)	Disabled Value	Does not allow frequencies below the set value to flow into the measurement signal. This function is e.g. used to filter out the gravita- tional acceleration. The frequency selection depends on the setting of the low-pass filter.

A 3.5.1 Filter Configuration

With a low pass filter setting of \geq 500 Hz digital transmission is no longer possible. The measured values are no longer displayed in the software. Only the analog outputs can be used.

Fields with gray backgrounds require a selection.

A 3.5.2 Measuring Range

Measuring ra	ange		
Current measu	ring range (g)	± 8,00 🗘	
Current scale f	or the analog output		
Sensitivity: 1m/	\/g 0.25V/g		
4mA = -8g	20mA = +8g		
0,5V = -8g	4,5V = +8g		
Digital resoluti	on: 256000LSB / g		

Fig. 28 Measuring range

Measuring range	Current measur- ing range	Value	Select measuring range between ± 0.1 g and ± 8 g
	Current scale for the analog output	Value	Display of the current analog output scaling (sensitivity) and the digital resolution.

Fields with gray backgrounds require a selection.

Output 1, 2, 3	Setting options for output						
	Type of analog	Output off	Output deactivated				
	output	Current output (4 - 20 mA)	Selection of current output 4 - 20 mA				
		Voltage output (0.5 - 4.5 V)	Selection of voltage output 0.5 - 4.5 V				
		Switching output	Setting options, see separate table below				

A 3.5.3 Output 1, 2, 3

Output 1, 2, 3	Setting options for s	Setting options for switching output								
	Vector addition	x y z		Z	Selection of measurement axes (x, y, z) for which a vector addition should be per- formed.					
	Threshold A (g)	Value			Adjustable threshold. Triggers the active switching event when the threshold is ex- ceeded ¹ .					
	Threshold B (g)	Value			Adjustable threshold. Triggers the active switching event when the threshold is not reached ² .					
	Modus	Immed	iately		Setting, see 4.4.2					
		After tir	ne		Setting, see 4.4.2					
	Delay time tv (ms)	Value			Setting, see 4.4.2					

Fields with gray backgrounds require a selection.

1) Threshold is not exceeded (not active): low / Threshold is exceeded (active): high

2) No threshold shortfall (not active): low or high / Threshold is not reached (active): low

1 2 6

Info Monu

Connections Measurement	Single Value Srequency Anal	ysis (FFT) ③ Settings O	Info	English
inertialSENSOR ACC5703	Controller information	Sensor information		
Baud rate: 230400 Port number: COM3 Serial number controller: 24	Sensor type: inertialSENSOR ACC5703 Article Number: 663001152 Controller name: ACC5703	Acceleration X Sensor type: inertialSENSOR ACC5703	Acceleration Z Sensor type: inertialSENSOR ACC5703 Article Number: 0	Copy to clipboard
→ Disconnect	Option: 0 Serial Number: 24 Software Version: 2.8 Diagnostic information No Information available	Offset: -8 Measuring range: 16 Serial Number: 0 Unit: 9 Acceleration Y Sensor type: inetialSENSOR ACC5703	Offset: -8 Measuring range: 16 Serial Number: 0 Unit: g	
		Article Number: 0 Offset: -8 Measuring range: 16		

Fig. 29 Info menu view

This window provides the current overview of the sensor Information and diagnostic information. By clicking the Disconnect button you return to the sensor search.

Clicking the Copy to Clipboard button copies the information and settings to the clipboard.

Copy to Clipboard

Fig. 30 Copy to Clipboard button

By pressing the Factory Reset button, you can restore the factory settings.

Factory Reset

Fig. 31 Factory resetting button

Export Settings opens the explorer to store the setting values in a default file *.csv on the PC.

Export Settings

Fig. 32 Export settings button

Import Settings

Fig. 33 Import settings button

Import Settings opens the explorer and enables loading of the setting values from a stored *csv.file.

A 4 Digital Interface RS485

A 4.1 Hardware Interface

The interface is a half-duplex RS485 interface, which means that one cable pair is jointly used for sending and receiving.

Baud rate	230400 b/s
Data format	1 start bit, 8 data bits, 1 parity bit even, 1 stop bit
Bus address	126

Fig. 34 Settings of the RS485 interface

A terminating resistance of 120 Ω is required between the A- and B-line of the RS485 interface at the beginning and the end of the RS485 bus. A terminating resistor of the RS485 line is not incorporated in the sensor. It is therefore allowed to connect several sensors to one bus cable.

A 4.2 Protocol

The sensor acts as RS485 slave. As the system uses a half-duplex protocol, only the master can initiate communication. Each device at the RS485 bus requires its own address. The master sends an enquiry with the destination address to the bus and only the slave with this address answers accordingly.

Α	4.2.1	Reading	Measurement	Data
---	-------	---------	-------------	------

Master: Request data									
SD	DA	SA	FC	FCS	ED				
0x10	x	x	0x4C	x	0x16				
		FCS							
	Jest data SD 0x10	Jest data SD DA 0x10 x	Jest data SD DA SA 0x10 x x	Jest data SD DA SA FC 0x10 x x 0x4C FCS	Jest data SD DA SA FC FCS 0x10 x x 0x4C x FCS				

Slave: Response data										
Byte:	SD	LE	LE rep	SD rep	DA	SA	FC	Data[]	FCS	ED
Value:	0x68	x	х	0x68	x	x	0x08	х	x	0x16
							FCS			

Designations						
SD	Start Delimiter (0x10: datagram without data, 0x68: datagram with variable length)					
LE	Length (number of bytes of Data [] +3 (DA, SA, FC)					
LE rep	LE repeated					
SD rep	SD repeated					
DA	Destination Address (default 0x7E = 126)					
SA	Source Address (e. g. 0x01)					
FC	Function Code					
FCS	Checksum Request: sum of all bytes with DA, SA and FC; overflow at 256 Response: sum of all bytes with DA, SA, FC and Data; overflow at 256					
ED	End Delimiter					
Data[]	Measurement data, variable number, little endian					

The measurement data consists of

- one status byte,

- one measured values counter (4 bytes),
- number of measured values (1 byte) and
- the measured data.

The measured values counter increases continuously with each sampled value. It represents the number of measured values buffered in the sensor since the last enquiry by the master and therefore represents the number of the measured values transmitted in this package (floats).

A new sampled measurement value is saved to the internal buffer of the sensor. The maximum number of values which can be saved is 19 for each measurement axis. Therefore, an enquiry by the master must reach the sensor within a certain time, that depends on the set sampling rate, in order to read the content from the internal memory and ensure uninterrupted sampling (periodic enquiry).

- Example 1 kHz: 19 values * 1 ms = 19 ms
- Example 250 Hz: 19 values * 4 ms = 76 ms

If the enquiries are not made in time, error flag 0x01 is set in the status byte. The measurement is continued anytime, i.e. the values in the buffer which are not read will be overwritten with updated measurements. The buffer content is, therefore, always updated. The overflow error flag is deleted automatically as soon as the master resumes its periodic enquiries.

The analog output remains unaffected by this. The first measurement value in the Data[] package is the oldest measured value. A measured value is represented as 4-byte float data type in the unit [g]¹.

1) 1 g = 9.81
$$\frac{m}{s^2}$$

Byte	Meaning	Data format				
Data[0]	Status byte (contains error flags, normally 0x00	8 bit				
Data[1]	Long term values counter [bit 0:7] // measured value counter					
Data[2]	Long term values counter [bit 8:15]	Llint 20 hit				
Data[3]	Long term values counter [bit 16:23]	- Unt 32 bit				
Data[4]	Long term values counter [bit 24:31]					
Data[5]	Number of measured values in this package = [1 19]	8 bit				
Data[6]	Padding byte	8 bit				
Data[7]	Padding byte	8 bit				
Data[8]	Measured value 1 x-axis [bit 0:7]					
Data[9]	Measured value 1 x-axis [bit 8:15]					
Data[10]	Measured value 1 x-axis [bit 16:23]					
Data[11]	Measured value 1 x-axis [bit 16:23] Measured value 1 x-axis [bit 24:31] Measured value 2 x-axis [bit 0:7]					
Data[12]	Ata[11] Measured value 1 x-axis [bit 24:31] ata[12] Measured value 2 x-axis [bit 0:7]					
Data[13]	Measured value 2 x-axis [bit 8:15]	Float 32 Dit				
Data[14]	Measured value 2 x-axis [bit 16:23]					
Data[15]	Measured value 2 x-axis [bit 24:31]					
Data[83]	Measured value 19 x-axis [bit 24:31]					
Data[n] n=8+(4*Data [5])	Measured value 1 y-axis [bit 0:7]					
Data[n+1]	Measured value 1 y-axis [bit 8:15]	Float 32 bit				
Data[n+2]	Measured value 1 y-axis [bit 16:23]					
Data[n+3]	Measured value 1 y-axis [bit 24:31]					

Byte	Meaning	Data format		
Data[n+4]	Measured value 2 y-axis [bit 0:7]			
Data[n+5]	Measured value 2 y-axis [bit 8:15]	Flact 00 bit		
Data[n+6]	Measured value 2 y-axis [bit 16:23]			
Data[n+7]	Measured value 2 y-axis [bit 24:31]			
Data[n+m]	Measured value 1 z avis [hits 0:7]			
m=4*Data[5]	Measured value 1 2-axis [bits 0.7]			
Data[n+m+1]	Measured value 1 z-axis [bits 8:15]	Float 32 bit		
Data[n+m+2]	Measured value 1 z-axis [bits 16:23]			
Data[n+m+3]	Measured value 1 z-axis [bits 24:31]			

Fig. 35 Encoding of Measured Data in the Transmission Protocol

Master: Request data							
Byte:	SD	DA	SA	FC	FCS	ED	
Value:	0x10	0x7E	0x01	0x4C	0xCB	0x16	
			FCS				

A 4.2.2 Example Transmission of a Measurement Value

 $DA = Destination Address = 0x7E = 126_{10}$ (slave address)

SA = Source Address = 0x01 (master address)

FCS = Checksum = 0x7E + 0x01 + 0x4C = 0xCB

= 126 + 1 + 76 = 203 (no overflow) at 256)

Slave: Response data										
Byte:	SD	LE	LE	SD	DA	SA	FC	Data[]	FCS	ED
			rep	rep						
Value:	0x68	1B	1B	0x68	0x01	0x7E	0x08	х	0x67	0x16
					FCS					

LE = Length(data) + 3 = Length(16 byte measurement values + 1 byte status + 4 byte counter + 1 byte numberl + 2 byte padding) + 3 = 27

DA = Destination Address = 0x01 (Master)

 $SA = Source Address = 0x7E = 126_{10}$ (Slave)

FCS = Checksum = 0x01 + 0x7E + 0x08 + 0x00 (status) + 0x04 (counter) ...

= 0x67 (note overflow at 256 each time = reset sum to zero)

MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße 101 · 73037 Göppingen / Germany Tel. +49 (0) 7161 / 98872-300 · Fax +49 (0) 7161 / 98872-303 eltrotec@micro-epsilon.com · www.micro-epsilon.com Your local contact: www.micro-epsilon.com/contact/worldwide/

X9751392-A0321239HDR