Proper Environment

- Protection class: IP65 (applies only when sensor cable is plugged in)

Lenses are excluded from the protection class. Contamination of the lenses causes impairment or failure of the function.

- Temperature range

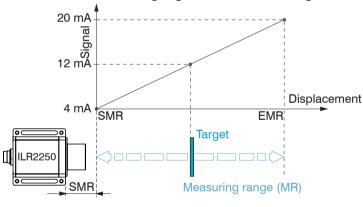
Storage:

- 5 ... 95 % RH (non-condensing) Humidity:
- -10 ... +50 °C Operation: Ambient pressure: Atmospheric pressure -20 ... +70 °C

Unpacking/Included in Delivery

1 Sensor ILR2250-100 1 German laser information sign 1 Mounting set 1 IEC laser information sign 1 Assembly instructions

Sensor Fastening, Dimensional Drawings


The optoNCDT ILR2250 sensors are optical sensors that operate with millimeter accuracy.

- Ensure careful handling during intallation and operation
- Conly attach the sensor on a flat surface using the holes provided. Any type of clamping is not permitted.

Mount the sensor on the sensor base plate using four M4 screws.

Term Definitions, Analog Output Displacement

For ILR2250 sensors, the start of the measuring range is placed in front of the sensor. The point of reference is the front housing edge on the sensor housing.

Position the sensor so that the connections and display elements are not concealed. We recommend maintaining a clearance of 2 - 3 cm at the cooling ribs on the left and right sides.

SMR Start of measuring range, minimum distance between sensor and target

- End of measuring range (start of measuring range + measuring range), EMR maximum distance between sensor and target
- MR Measuring range

Laser Spot Diameter, Min. Target Size

The laser spot diameter increases with increasing distance (displacement). Keep this in mind for the selection/size of the measuring object.

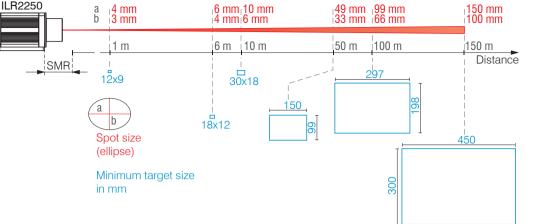


Fig. 3 Laser spot dimensions and size of measuring object depending on the distance

The measuring object must have at least three times the size of the laser spot.

Fastening

Bolt length	Screwing depth	Screw	Torque
5 mm	min 10 mm	M4 ISO 4762-A2,	1.7 Nm for strength class 70
		4 pc.	2.3 Nm for strength class 80

Conditions for a bolt connection ¹

1) Recommendation: Test under use conditions!

- The visible point of light of the measurement laser should be in the center of the reflector.
- sary.

The center of the spot must be in the center of the reflector over the entire measuring range. Target (reflector) and sensor can only be tilted by at most 5° relative to one another.

÷,

Sensor Installation

Only attach the sensor on a flat surface using the holes provided. Any type of clamping is not permitted.

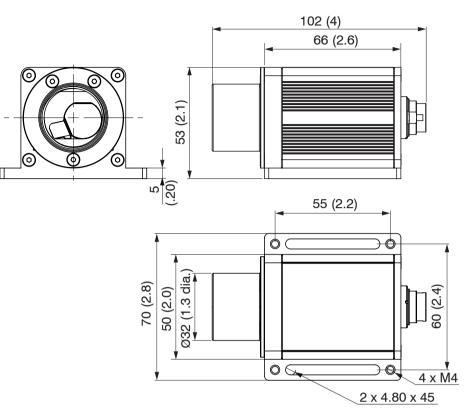
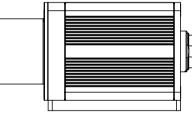


Fig. 4 Dimensional drawing optoNCDT ILR2250-100, dimensions in mm

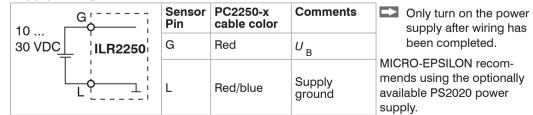
Additionally, 4 set screws can be used to adjust the sensor.


Reflector Installation

- The sensor measures the distance to moving and stationary objects:
- In the range of 0.05 m ... 100 m for diffuse reflecting surfaces
- Between 35 and 150 m onto reflectors (e.g. ILR-RF210, Scotchlight by 3M etc.)
- The measurement laser can be used for alignment. When aligning the sensor, proceed as follows: Position the sensor at the furthest possible point from the reflector (for example < 1 m).
- Position the sensor at the furthest possible point from the reflector.
- Check that the measurement laser is pointing at the center of the reflector and adjust if neces-

Pin Assignment

Signal	Pin	PC2250-x cable color Explanation		Comments, circuitry		
RX+	Α	White	RS422 input	Internally terminated with 120 Obm		
RX-	В	Brown	(symmetrical)	Internally terminated with 120 Ohm		
TRIG	С	Green	Switching input	Trigger input, $t_i > 2$ ms		
I _{out}	D	Yellow	Analog output	4 20 mA		
TX -	E	Gray	RS422 output	Receiver terreinsted with 100 Ohre		
TX+	F	Pink	(symmetrical)	Receiver terminated with 120 Ohm		
$+U_{\rm B}$	G	Red	Supply voltage	10 30 VDC, typ. 24 VDC		
OUT1	Н	Black	Switching output 1	Switching behavior programmable: NPN, PNP,		
OUT2	к	Gray/ pink	Switching output 2	push-pull, push-pull negated / _{max} = 50 mA		
OUT3	М	Blue	Switching output 3	Protected against polarity, overload and exces- sive temperature		
GND	L	Red/blue	Supply ground	Reference potential for switching outputs as well		
GND	J	Purple	Signal ground	Reference potential for analog output		



The ground lines are connected internally and are the reference potential for all voltage values given below. All outputs are designed t be permanently resistant to short circuits.

Solder side 12-pin cable socket Power supply and signal socket M16x0,75; 12-pin. The optionally available PC2250-x and PC2250/90-x supply/output cables can be used with drag chains and have the following bend radii: 47 mm (once) 116 mm (permanent)

Make sure that cable ends are not exposed. This could cause short NOTICE circuits. Connecting input signals to outputs can damage the sensor!

Supply Voltage, Nominal value: 24 V DC (10 ... 30 V, P < 5.5 W)

Intended Use

The optoNCDT ILR2250 is designed for use in industrial and laboratory applications. It is used for distance, displacement and position measurement, monitoring quality and checking dimensions. The system must only be operated within the limits specified in the technical data, see operating Instructions, Chap. 3.4.

The system must be used in such a way that no persons are endangered or machines and other material goods are damaged in the event of malfunction or total failure of the system. Take additional precautions for safety and damage prevention in case of safety-related applications

Warnings

Connect the power supply according to the safety regulations for electrical equipment. > Risk of injury, damage to or destruction of the sensor

steamed up or dirty.

Laser Safety

The optoNCDT ILR2250 works with a semiconductor laser with a wavelength of 655 nm (visible/red). The sensors fall within laser class 2. The laser is operated on a pulsed mode, the maximum optical power is \leq 1 mW. Operation of the laser is indicated visually by the Signal LED on the sensor. The warning sign below, see Fig. 1, is attached to the sensor housing (front side):

Fig. 1 Laser warning sign and laser label, Fig. 2 Laser warning sign and laser label, optoNCDT ILR2250-100. IEC optoNCDT ILR2250-100, for Germany The German laser information sign, see Fig. 2, is enclosed, along with an additional international

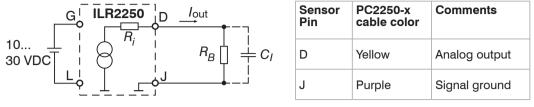
laser information sign.

Assembly Instructions optoNCDT ILR2250

The supply voltage must not exceed the specified limits. Install the sensor on a flat surface using the mountain holes/threaded holes provided, any type of clamping is permitted.

Avoid shocks and impacts to the sensor, protect the sensor cable against damage. Do not touch the lenses or protective windows. Remove any fingerprints immediately using pure alcohol and a clean cotton cloth without leaving any streaks. Do not operate the sensor if optical components are

> Damage to or destruction of the sensor, failure of the measuring device

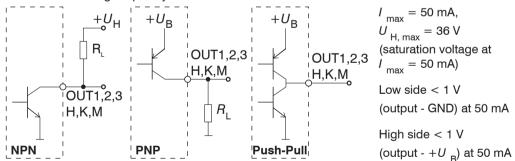

Laser radiation. Irritation or injury of the eyes possible. Close your eyes or immediately turn away if the laser beam hits the eye.

Analog Output

The sensor produces a current output of 4 ... 20 mA.

- The output may not be used continuously in short-circuit operation without a load resistor.
- Continuous short-circuit operation leads to thermal overloading and thus causes the output to switch off automatically.

The current impressed in the line is proportional to the measured distance.



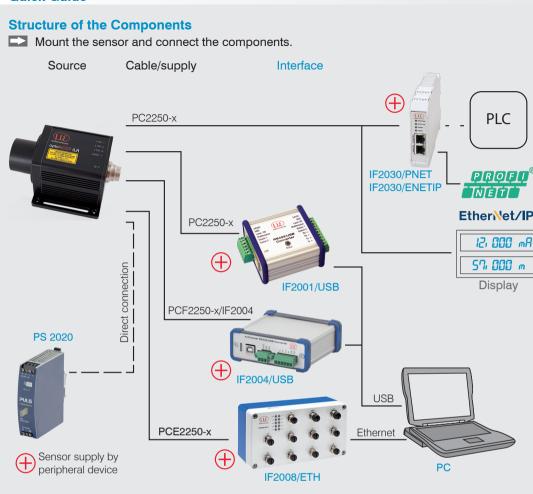
Analog output properties

- 4 20 mA	Load			
- Behavior when error reported: 3 mA	- R _B < U _B - 1 V / 20 mA @10 V: R _B < 450 Ohm			
- Resistant to short circuits	@24 V: R _ < 1150 Ohm			
- Distance range limits adjustable	@30 V: R _B < 1450 Ohm			
- Resolution: 16 bit DA converter	- <i>R</i> _i 30 Ohm			

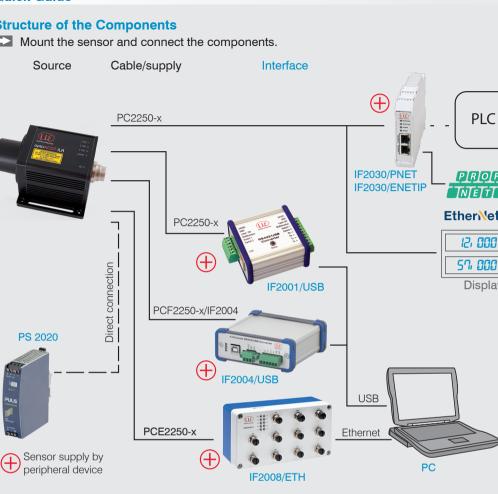
Switching Output, HT Logic

The switching behavior (NPN, PNP, push-pull, push-pull negated) of the switching output depends on the programming. The outputs are resistant to short circuits, are not electrically separated, the maximum switching frequency is 10 kHz.

Switching behavior			
Name	Output active (error)	Output passive (no error)	
NPN (Low side)	GND	Approx. +U H	
PNP (High side)	+ <i>U</i> _B	Approx. GND	
Push-pull	+ <i>U</i> _B	GND	
Push-pull, negated	GND	+U _B	


RS422 Connection with USB Converter IF2001/USB

For the connection between sensor and PC, the lines must be crossed.


Only disconnect or connect the sub-D connection between the RS422 and USB converter when no voltage is flowing.

Sensor			Terminal, PLC, IF2001/USB converter from MICRO-EPSILON
Pin	Cable color (cable: PC2250-x)	Function	Function
A	White	Rx+	Tx+
В	Brown	Rx-	Tx-
Е	Gray	Tx-	Rx-
F	Pink	Tx+	Rx+
J	Purple	GND	GND

Symmetrical differential signals according to EIA-422, not electrically separated from the voltage supply. Use a shielded cable with twisted wires, e. g. PC2250-x. The RS422 interface can be used for configuration as well as for permanent data transmission, even over longer distances.

Quick Guide

MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße 101 • 73037 Göppingen / Germany Tel. +49 (0)7161 98872-300 • Fax+49 (0)7161 98872-303 eltrotec@micro-epsilon.de • www.micro-epsilon.com

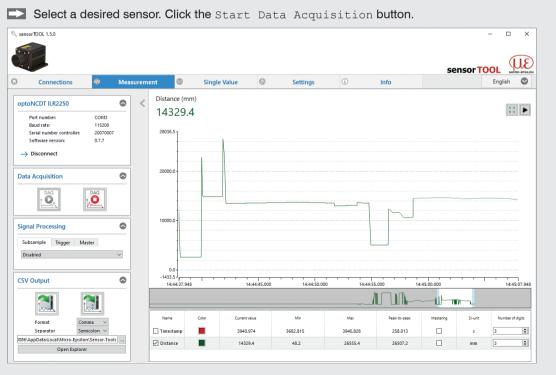
Your local contact: www.micro-epsilon.com/contact/worldwide/

Initial Operation

CE K 🗵

The measurement laser starts when the supply voltage is applied if an active measurement (see LASER MEASURE ON) has previously been saved in the sensor.

The sensor is ready to use after approx. 2 s, digital accuracy is immediate. The sensor typically requires a warm-up time of 5 min for reproducible measurements via the analog output.


Connect the sensor to a PC/notebook via an RS422 converter and connect the power supply.

Launch the sensorTOOL program.

Click on the Sensor button.

The program will now search for connected ILR2250 sensors on the available interfaces.

Connections Connections Connections Connections Connections Raw Parameter View OptoNCDT ILR2250 Raw Parameter View OptoNCDT ILR2250 Raw Parameters Connections Start Data Acquisition Parameters Connections Start Data Acquisition	C sensorTOOL 1.5.0	. Search Re	sensor TOOL English ©	Ine sensorTOOL pro- gram also finds connect- ed sensors via a network. You can find this program online at
Load sensor protocol	Sensor type opteNCDT ILR Sensor type opteNCDT ILR Search serial interfaces Calculation of the series of	OptoNCDT ILR2250 Parameters Port number: COM3 Baud rate: 11520 Serial number controller: 2007007	Raw Parameter View	https://www.micro-ep- silon.de/download/soft- ware/sensorTOOL.exe.

Presets, Analog Output, Switching Outputs

Switch to the Settings menu.

By selecting a measurement mode in the Data Acquisition section, you can switch between the saved configurations (presets) for various target surfaces and target movement speeds. This will produce the best results for the material selected.

Single Value 🚳	Settings	(i)	Info				English	•
Measurement	10	Digital Outputs						
Automatic mode			Switching out	put 1	Switching out	put 2	Switching out	tput 3
○ Fast mode		Switching mode	LIMIT	\sim	NONE	\sim	NONE	~
○ Accurate mode		Output level	PUSHPULL	~	PUSHPULL	\sim	PUSHPULL	~
O Precise mode		Limit compare to	BOTH	\sim	BOTH	~	BOTH	~
		Limit max (mm)	150000,0	-	150000,0	*	15000,0	*
		Limit min (mm)	0,0	-	0,0	*	0,0	*
Region of interest max 150000,0 🖨 mm		Hysteresis (mm)	0,0	-	0,0	*	0,0	*
Region of interest min 0,0 🖨 mm		Hold digital switches sig	naling state for	1	≑ m	IS		
Hold last valid value NONE ~ 1	*	Analog Output						
Temperature (°C) 31.300		Scale the max. distance of	of 500	0.0	🖨 mm te	o a cu	rrent of 20 mA	
Trigger		Scale the min. distance o	of 20,	.0	🖨 mm te	o a cu	rrent of 4 mA	
Mode NONE ~		Environment						
Level HIGH V								
Moment INPUT V							-	
Count 2147483647 values			'				Co	onfig

Region of interest max		150000,	0 🖨	mm
Region of interest min		0,0	¢	mm
Hold last valid value		NONE	~	1
Temperature (°C)		31.300		
Triaaer				
Mode	NONE		\sim	
Level	HIGH		\sim	
Moment	INPUT		\sim	
Count	214748364	47	‡ val	ues

TOOL pro-

Display Elements, LED

LED	Function			
Out 1	Switching output			
Out 2				
Out 3	Switching output			
Signal	Reflection strengt			
Power	Operational readiness			
Save the Settings				
Go to the Settings				
Environment				
U U				

You can find more information about the sensor in the operating instructions. They are available online at: www.micro-epsilon.com/download/manuals/man--optoNCDT-ILR-22xx--en.pdf

Display	Status	LEDs Out 1 - 3
Off	Switching output inactive	
White	Switching output active	
Green	Signal very good	
Yellow	Signal satisfactory	Dever Production CLASS PROMOCIUM CLASS 2 LASS PRODUCT BUSICS 2004 Protein 1-2,000
Red	Weak signal/ error	
Off	No supply volt- age	LED SIGNAL LED Power
Green	Ready to use	1) For ILR2250-100-H sensors with inte-
Yellow	Warm-up phase ¹	gral climate function only
	Off White Green Yellow Red Off Green	OffSwitching output inactiveWhiteSwitching output activeGreenSignal very goodYellowSignal satisfactoryRedWeak signal/ errorOffNo supply volt- ageGreenReady to use

> Environment menu and click on the Config button.

After programming, save all settings permanently so that they will be available again the next time you switch on the sensor.