More Precision.

Gauges and inspection systems // Extrusion and calender lines
Gauges and inspection systems for extrusion and calender lines

References

THE BENCHMARK IN OPTICAL THICKNESS MEASUREMENT
25 YEARS OF INNOVATION WITH MORE PRECISION
Measured features

Overview

Precise inline thickness measurement
thicknessGAUGE C
Page 4 - 5

O-frame system with measuring roller
thicknessCONTROL STG 8301
Page 10 - 11

Precise inline thickness measurement
thicknessGAUGE O
Page 6 - 7

O-frame system for thickness measurement
thicknessCONTROL STG 8101
Page 12 - 13

Non-contact thickness measurement
thicknessCONTROL STG
Page 8 - 9

Wear inspection of the inner diameter of extruder barrels
idiamCONTROL
Page 14 - 15
Sensor systems for precise inline thickness measurement

thicknessGAUGE C

- **Fully automatic calibration** enables reliable measurements (here: thicknessGAUGE C.LP)

Operating principle of thickness measurement

The principle of dimensional, geometric thickness measurement includes one optical distance sensor on each side of the material. The distance (=operating range) of both sensors is determined in a calibration process based on a measurement standard certified by DAkkS (German Accreditation Body) of which the thickness is added to the sum of the sensor signals in order to determine the current operating range.

Available options:

- Selectable cable lengths
- Customer-specific axis length
- Encoder
- Interface for fieldbus connection
- Digital inputs/outputs

Automatic calibration and temperature compensation

thicknessGAUGE systems are equipped with in-situ calibration in order to compensate, e.g., for the effects of fluctuating temperatures. A linear axis moves the thicknessGAUGE to the parking position. The calibration cycles are individually adjustable. In addition to temperature compensation, in-situ calibration enables proper functioning of the system to be verified cyclically and at any time.

Technologies

thicknessGAUGE C.L

- Sensor technology used: Laser triangulation displacement sensors
 - Measuring range (thickness): 10 / 25 mm
 - Accuracy: ±2 / ±5 µm
 - Measuring rate: up to 4 kHz
- Reasonably priced sensor system for common surfaces from plastics to metals
- Compact design meets high performance & excellent price/performance ratio

Thickness measurement with high precision

thicknessGAUGE sensor systems are used for precise thickness measurements of strip materials, plates and sheets up to 25 mm. Several models with different sensor types, measuring ranges and measuring widths enable inline thickness measurements of different materials and surfaces based on an unmatched price/performance ratio.

This fully assembled system comprises a stable frame on which two optical sensors are mounted, that detect the thickness of the measuring object according to the difference principle. The sensors are perfectly aligned to each other and calibrated during the assembly. Furthermore, thickness calibration at the factory ensures high precision.
thicknessGAUGE C.C

Sensor technology used:
Confocal chromatic displacement sensors
- Measuring range (thickness): 2 mm
- Accuracy: ±0.4 µm
- Measuring rate: up to 5 kHz
Ideal for high resolution measurements of highly reflective and shiny surfaces
Also for transparent and semi-transparent film

thicknessGAUGE C.LP

Sensor technology used:
Blue Laser profile sensors
- Measuring range (thickness): 8 mm
- Accuracy: ±0.75 µm
- Measuring rate: up to 100 Hz
For structured materials, e.g., perforated and embossed plates
Best-fit line possible
Compensation for tilted strips

The new class for inline thickness measurements

thicknessGAUGE sensor systems are used in industrial environments for precise thickness measurements of strip and plate materials. A linear unit with electromechanical drive enables thickness measurements in traversing mode. Alternatively, fixed track measurements are possible for center-line measurements (center thickness) or for thickness measurements on the edges. These compact systems are comprised of an integrated linear unit including motor control, a compact bus terminal box, an automatic calibration unit as well as a multi-touch PC with pre-installed software. The entire system is powered via a 24 V source.

Technologies

<table>
<thead>
<tr>
<th>Model</th>
<th>C.L-10/200</th>
<th>C.L-10/400</th>
<th>C.L-25/200</th>
<th>C.L-25/400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article no.</td>
<td>4350127.800</td>
<td>4350127.801</td>
<td>4350127.802</td>
<td>4350127.803</td>
</tr>
<tr>
<td>Measuring width</td>
<td>200 mm</td>
<td>400 mm</td>
<td>200 mm</td>
<td>400 mm</td>
</tr>
<tr>
<td>Measuring range</td>
<td>10 mm</td>
<td>25 mm</td>
<td>20 mm</td>
<td>40 mm</td>
</tr>
<tr>
<td>Accuracy (1)</td>
<td>< ±2 µm</td>
<td>< ±5 µm</td>
<td>< ±0.4 µm</td>
<td>< ±0.7 µm</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.7 µm</td>
<td>3.2 µm</td>
<td>0.3 µm</td>
<td>0.8 µm</td>
</tr>
<tr>
<td>Repeatability (1)</td>
<td>±0.3 µm</td>
<td>±0.8 µm</td>
<td>±0.3 µm</td>
<td>±0.8 µm</td>
</tr>
<tr>
<td>Material temp.</td>
<td>40 °C</td>
<td>40 °C</td>
<td>40 °C</td>
<td>40 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>C.C-2/200</th>
<th>C.C-2/400</th>
<th>C.LP-8/200</th>
<th>C.LP-8/400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article no.</td>
<td>4350127.900</td>
<td>4350127.901</td>
<td>4350127.700</td>
<td>4350127.701</td>
</tr>
<tr>
<td>Measuring width</td>
<td>200 mm</td>
<td>400 mm</td>
<td>200 mm</td>
<td>400 mm</td>
</tr>
<tr>
<td>Measuring range</td>
<td>2 mm</td>
<td>8 mm</td>
<td>2 mm</td>
<td>8 mm</td>
</tr>
<tr>
<td>Accuracy (1)</td>
<td>< ±0.4 µm</td>
<td>< ±0.75 µm</td>
<td>< ±0.15 µm</td>
<td>< ±0.2 µm</td>
</tr>
<tr>
<td>Resolution</td>
<td>40 nm</td>
<td>0.2 µm</td>
<td>0.15 µm</td>
<td>0.2 µm</td>
</tr>
<tr>
<td>Repeatability (1)</td>
<td>±0.15 µm</td>
<td>±0.2 µm</td>
<td>±0.15 µm</td>
<td>±0.2 µm</td>
</tr>
<tr>
<td>Material temp.</td>
<td>40 °C</td>
<td>40 °C</td>
<td>40 °C</td>
<td>40 °C</td>
</tr>
</tbody>
</table>

(1) 2σ; data valid for diffuse reflecting, metallic measurement standard (DAkkS certified); (2) Temperature drift: ±0.015 % FSO / K

(1) In case of one-sided measurement: ± 1 µm

Fixed track center thickness measurement (strip width max. 800 m)
Traversing thickness measurement (strip width max. 400 mm)
Fixed track measurement on the edges (any strip width)
Sensor systems for precise inline thickness measurement

thicknessGAUGE O

The **new class for inline film thickness measurements**

The thicknessGAUGE O series offers compact inline measuring systems in O-frame or gantry form and is used for precise thickness measurement of non-conductive strip material. These compact systems consist of a stable base frame, an integrated control cabinet and one measuring roller or two guide rollers. Currently, they can be equipped with the combiSENSOR KSS6430 or the interferometer IMS5400MP-DS19.

The combiSENSOR has a concentrically arranged eddy current coil and measurement electrode. Both sensors measure against the same spot. The signal of the capacitive displacement sensor is a function of the working distance, the thickness of the insulator \((D)\) and the dielectric constant of the insulator material \((\varepsilon_r)\). At the same time, the eddy current displacement sensor measures the distance to the measuring roller and thus compensates for a change in the working distance of the capacitive sensor during thermal deformation of the measuring frame. The interferometer works with polychromatic white light. The integrated light source uses an extended wavelength spectrum instead of a defined wavelength. Thus, significantly more information is available for the evaluation of the superposition from transmitted and received wavelengths. Multi-peak distance measurement on transparent objects is realized, thin transparent coatings can be measured with high precision.

Flexible integration into production line

thicknessGAUGE O.EC can generate both a transverse profile of the material thickness in traversing mode, and a longitudinal profile at any width position. The measurement data is displayed on the touch panel IPC included in the scope of supply. Via the optional network or fieldbus interface, thicknessGAUGE O can be coupled with the production line to automate the measuring operation.

One-sided geometric thickness measurement

Different materials widths up to 1,250 mm

Traversing measurement or fixed track measurement

Comprehensive software package for data acquisition, signal processing and automation

Suitable for OEMs

thicknessGAUGE O.EC

Sensor technology used: combiSENSOR capacitive/eddy current

- Measuring range (thickness): 5 mm
- Accuracy: \(\pm 0.3\ \mu\text{m}\)
- Measuring rate: up to 3.9 kHz

Compact sensor system for one-side measurement of the total thickness of non-conductive materials.
Technologies

Sensor technology used: interferometer

- Measuring range (thickness): 1.4 mm
- Accuracy: ±0.2 µm
- Measuring rate: up to 6 kHz

Compact sensor system for one-sided measurement of the total and layer thicknesses of transparent materials

Applications with sensor technology from Micro-Epsilon

Inline color measurement of transparent films using the ACS3 transmission sensor and colorCONTROL ACS7000

Advantages:

- Accuracy and high speed for inline integration
- 100% quality control due to automatic and continuous color inspection
- Increase in productivity and reduction of waste

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Article no.</td>
<td>4350123.10</td>
<td>4350123.11</td>
<td>4350123.12</td>
<td>4350123.13</td>
<td>4350123.510</td>
<td>4350123.511</td>
<td>4350123.512</td>
<td>4350123.513</td>
</tr>
<tr>
<td>Max. measuring width</td>
<td>500 mm</td>
<td>750 mm</td>
<td>1000 mm</td>
<td>1250 mm</td>
<td>500 mm</td>
<td>750 mm</td>
<td>1000 mm</td>
<td>1250 mm</td>
</tr>
<tr>
<td>Measuring range</td>
<td>3 mm</td>
<td>1.4 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy ($)</td>
<td>±0.3 µm</td>
<td>±0.2 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>0.045 µm</td>
<td>0.001 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeatability</td>
<td>±0.06 µm</td>
<td>±0.04 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material temperature</td>
<td>45 °C</td>
<td>45 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) σ, $\varepsilon_r = 1$

Powerful software

- Visualization of measurement results in numerical form and adjustable display of cross profile and longitudinal profile for ease of use
- Display of either imperial or metric units
- Flexible interface for control signals and process data for production line, especially for length/speed signal (= encoder signal)
- Preconfigured for teleservice via VPN connection
- Integrated, full automatic test of equipment capability
- Based on Windows 10

Technologies

thicknessGAUGE O.IMS

Sensor technology used: interferometer

- Measuring range (thickness): 1.4 mm
- Accuracy: ±0.2 µm
- Measuring rate: up to 6 kHz

Compact sensor system for one-sided measurement of the total and layer thicknesses of transparent materials
Non-contact thickness measurement

thicknessCONTROL STG 8102

The modularly designed, C-frame based systems of the thicknessCONTROL TCP STG 8102 series impress due to their flexibility, robustness and performance. Their compact design enables to install precise inspection technology also in lines with low packaging space.

Wide variety of technologies

Either laser point triangulation sensors (ILD), confocal chromatic sensors (K) or laser profile scanners (LLT) are integrated in the lower and upper belts of the C-frame. The result of the measurement is the difference between the sum of the sensor signals and the working gap determined in the calibration.

In combination with highly-efficient signal processing algorithms of the analysis and visualization software, accuracies in the micrometer range are reached.

Due to the wide range of technologies that can be used in the thicknessCONTROL STG 8102 series, a wide variety of applications can be realized on a wide range of non-conductive materials, from transparent over glossy to mat black.

Integration in difficult environments

A fully-automatic in-situ calibration ensures the measurement to be independent from temperature influences, thus the system can be applied in harsh industrial environments being characterized by permanently providing inline precision.

All sensor technologies applied measure without contact, wear-free and without isotopes or X-rays. This process provides long-term reliable measured data while avoiding consequential costs.

The systems are mounted on linear axes. They have electric drives to position them firmly for measuring a longitudinal profile, for example in the middle of the strip material, or traversing to measure a transverse profile of the material. Furthermore, they can be equipped with cooling and protection units so that they can also be used in harsh environmental conditions.
thicknessCONTROL STG 8102.K

Sensor technology used: Confocal sensor technology
- Measuring range: 3 / 10 / 20 mm
- Accuracy: ±0.4 µm / ±0.7 µm / ±2.5 µm
- Measuring width: up to 1000 mm

Highly precise thickness measuring system for thin films with complex surfaces or transparent coatings
Multi-peak functionalities for multiple-layer measurement

Specifications

<table>
<thead>
<tr>
<th>Article no.</th>
<th>Measuring width</th>
<th>Measuring range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Repeatability</th>
</tr>
</thead>
<tbody>
<tr>
<td>4350127.410</td>
<td>250 mm</td>
<td>3 mm</td>
<td>0.07 µm</td>
<td>±0.4 µm</td>
<td>±0.3 µm</td>
</tr>
<tr>
<td>4350127.41</td>
<td>500 mm</td>
<td>10 mm</td>
<td>0.12 µm</td>
<td>±0.7 µm</td>
<td>±0.5 µm</td>
</tr>
<tr>
<td>4350127.44</td>
<td>1000 mm</td>
<td>30 mm</td>
<td>0.36 µm</td>
<td>±2.5 µm</td>
<td>±2.0 µm</td>
</tr>
<tr>
<td>4350127.411</td>
<td>250 mm</td>
<td>3 mm</td>
<td>0.07 µm</td>
<td>±0.4 µm</td>
<td>±0.3 µm</td>
</tr>
<tr>
<td>4350127.42</td>
<td>500 mm</td>
<td>10 mm</td>
<td>0.12 µm</td>
<td>±0.7 µm</td>
<td>±0.5 µm</td>
</tr>
<tr>
<td>4350127.45</td>
<td>1000 mm</td>
<td>30 mm</td>
<td>0.36 µm</td>
<td>±2.5 µm</td>
<td>±2.0 µm</td>
</tr>
<tr>
<td>4350127.43</td>
<td>250 mm</td>
<td>3 mm</td>
<td>0.07 µm</td>
<td>±0.4 µm</td>
<td>±0.3 µm</td>
</tr>
<tr>
<td>4350127.46</td>
<td>500 mm</td>
<td>10 mm</td>
<td>0.12 µm</td>
<td>±0.7 µm</td>
<td>±0.5 µm</td>
</tr>
<tr>
<td>4350127.411</td>
<td>1000 mm</td>
<td>30 mm</td>
<td>0.36 µm</td>
<td>±2.5 µm</td>
<td>±2.0 µm</td>
</tr>
</tbody>
</table>

1-track measurement mode

When choosing a C-frame, the measurement width plays an important role. If only the edge is to be measured, the smallest measuring width is sufficient. When measuring the center thickness, the measuring width must correspond to 50 percent of the material width. If the cross profile is to be measured, the measuring width must correspond to the maximum material width.

Technologies

- Measuring range: 60 / 100 mm
- Accuracy: ±0.3 µm / ±7.5 µm
- Measuring width: up to 1000 mm

High performance thickness measuring system for thick webs or sheets even for profile thickness measurement
Can be equipped with cooling and pneumatic protective equipment for the optical system for harsh ambient conditions
Operating principle of thickness measurement
The thicknessCONTROL STG 8101.EO systems are designed as O-frames and impress with their stability and extremely high precision in thickness measurement, especially for large material widths.

Color-independent thickness measurement
The system measures in traversing mode i.e. the thickness of the material is calculated from two distance signals. The combination of an eddy current sensor and a ThruBeam sensor is applied on the upper side of the material that is guided over a measuring roller. While the ThruBeam sensor detects the upper side of the material, the eddy current sensor measures the lower side indirectly by means of the surface of the measuring roller. The thickness of the material to be measured results from the difference between the two signals. With the color-independent functioning of the integrated ThruBeam sensor, the system provides highly precise results.

Suitable for harsh environments
The integration of an efficient, pneumatically operating protective device for the optics of the ThruBeam sensor makes the system insensitive to vapors and particles. An optional tempering of the measuring roller ensures highest precision at high material temperatures. Therefore, the system ideal for applications in harsh industrial environments. Furthermore, STG 8101.EO offers efficient operation facilities due to large maintenance-free intervals.

High degree of coverage
With O-frame shaped measuring systems, only the sensor technology traverses. Since it has only little weight, it can be accelerated quickly to scan correspondingly fast over the material during the traversal measurement. This is particularly favorable for large widths, as a very large number of cross sections can be detected per linear meter of material.
In addition to the thickness measuring systems, Micro-Epsilon offers both software and hardware for controlling the roller gap in calenders or regulating the nozzle gap via the thermal bolts of the extrusion nozzle.

Applications with sensor technology from Micro-Epsilon

Width measurement of strip materials with ThruBeam sensor ODC 2520

Advantages:
- Automatic calibration of the sensor position
- Flexible for different material widths
- High precision

<table>
<thead>
<tr>
<th>thicknessCONTROL STG 8101.EO</th>
<th>4350039.100</th>
<th>4350039.101</th>
<th>4350039.102</th>
<th>4350039.103</th>
<th>4350039.104</th>
<th>4350039.105</th>
<th>4350039.106</th>
<th>4350039.107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article no.</td>
<td>4350039.100</td>
<td>4350039.101</td>
<td>4350039.102</td>
<td>4350039.103</td>
<td>4350039.104</td>
<td>4350039.105</td>
<td>4350039.106</td>
<td>4350039.107</td>
</tr>
<tr>
<td>Measuring width</td>
<td>1000 mm</td>
<td>1500 mm</td>
<td>2000 mm</td>
<td>2500 mm</td>
<td>1000 mm</td>
<td>1500 mm</td>
<td>2000 mm</td>
<td>2500 mm</td>
</tr>
<tr>
<td>Measuring range</td>
<td>10 mm</td>
<td></td>
<td></td>
<td></td>
<td>20 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 µm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1 µm</td>
<td>±3 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeatability</td>
<td>±0.5 µm</td>
<td>±1.5 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) 2 σ
2) Without additional cooling

To monitor the functionality and precision of the system, procedure 1 and procedure 3 of the gauge capability test are integrated in the software and can be performed fully automatically.

Control of calender roller or extruder nozzle

In addition to the thickness measuring systems, Micro-Epsilon offers both software and hardware for controlling the roller gap in calenders or regulating the nozzle gap via the thermal bolts of the extrusion nozzle.
Sturdy system design
The STG 8101.CT/CLLT systems are designed as O-frames with opposing optical sensors. Their impressive precision is based on a harmonized package of sensors, mechanics and software.

Technical design for harsh industrial environments
The systems measure in traversing mode. The thickness of the material is determined from the difference resulting from the sensor distance and the sum of the sensor signals. The sensor distance is determined in an automatic in-situ calibration that can be performed in seconds. The sensors integrated on carriages in the lower and upper belt of the O-frame can be equipped with cooling elements and pneumatic protection devices for the optics. This means that the systems can be used at high material temperatures and have a high resistance to vapors and particles. All sensor technologies applied measure without contact, wear-free and without isotopes or X-rays.

Patented stability
The thicknessCONTROL STG 8101.CT/CLLT series exhibits revolutionary long-term stability in production thanks to its patented compensation concept for temperature-related parasitic effects acting on the mechanics.

thicknessCONTROL STG 8101.CT
Sensor technology used: laser triangulation displacement sensors
- Measuring range: 50 mm
- Accuracy: ±0.5 µm
- Measuring width: up to 4000 mm (on request)
Robust thickness measuring system for films and plates with simple surfaces
Can be equipped with cooling and pneumatic protective equipment for the optical system for harsh ambient conditions
ThicknessMeasurement

Thickness measurement systems for different applications:

Technologies

- **ThicknessCONTROL TCP 8101.CLLT**
 - Article no.
 - Measuring width: 700 mm, 1200 mm, 1700 mm, 2200 mm
 - Measuring range: 50 mm, 75 mm
 - Resolution: 1 µm
 - Accuracy: ±5 µm, ±3 µm
 - Repeatability: 0.5 µm
 - Material temperature: 60 °C
 - **Applications with sensor technology from Micro-Epsilon**
 - Blown film thickness measurement
 - **Advantages:**
 - 100 % non-contact and tactile capacitive measurement methods
 - Different coating for different film types
 - Adaptive reversing speed to ensure fast controlling
 - No consequential costs caused by isotopes or X-rays
 - Short control loop due to measurement on the bubble

- **ThicknessCONTROL STG 8101.CLLT**
 - Sensor used: laser profile scanner
 - Measuring range: 75 mm
 - Accuracy: ±3 µm
 - Measuring width: up to 4000 mm
 - High performance thickness measuring system for thick webs or sheets even for profile thickness measurement
 - Can be equipped with cooling and pneumatic protective equipment for the optical system for harsh ambient conditions

σ Without additional cooling
σ Min. material thickness 15 mm
Wear inspection of the inner diameter of extruder barrels
idiamCONTROL

Precise determination of the inner diameter of pipes
The idiamCONTROL sensor system precisely measures the inner diameter of bore holes such as in extruders in order to determine the wear. As the sensor measures a total of 6 tracks, the readings provide more accurate and meaningful measurement results.

For reliable guidance, the sensor system is centered at both ends by spring-loaded rollers. By rotating each cross roller through 40 degrees, the barrel bore can be measured in 6 tracks. The measurement itself is contactless.

On-site evaluation via touchscreen
The measurement results are displayed on a compact touchscreen. The measurement signal represents the diameter over the complete bore length and any tolerance deviations are immediately displayed.

For data output the device is equipped with a USB port. A calibration control system checks the functionality of the measuring system.

Suitable for extruder barrels from 32 to 180 mm diameter
Factory calibration enables measurement on any metal
Touchscreen for fast on-site evaluation
Reduced service time
Targeted inspection for replacement of defective segments
Extruder bores

Diameter: \(\phi = S_A + S_B + \text{const.} \)

Sensor with mechanical guide

Touchscreen panel with axial position detection

Applications with sensor technology from Micro-Epsilon

Gap measurement of plastic profiles using scanCONTROL 3000

Advantages:
- High speed measurements
- 100% quality control
- Closed Loop control possible

Model

<table>
<thead>
<tr>
<th>Model</th>
<th>IDC803E / IDC801-SUxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>8 / 18 mm</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.02 mm</td>
</tr>
<tr>
<td>Resolution</td>
<td>16 bits (1 µm)</td>
</tr>
<tr>
<td>Spatial resolution (longitudinal position)</td>
<td>1 mm (max. speed: 100 mm/s)</td>
</tr>
<tr>
<td>Interface</td>
<td>USB</td>
</tr>
<tr>
<td>Temperature</td>
<td>+5 … +60 °C</td>
</tr>
<tr>
<td>Humidity</td>
<td>5 - 95% (non-condensing)</td>
</tr>
<tr>
<td>Protection class</td>
<td>Sensor IP40, Controller IP40, Power supply IP20</td>
</tr>
</tbody>
</table>

Functional principle

The measuring system uses two capacitive displacement sensors arranged opposite each other to determine the diameter of the barrel bore. For the measurement, the sensor is pushed to the end of the extruder barrel and pulled out while measuring the bore hole. The reinforced cable is attached to the sensor with a special plug. The diameter values of several test cycles can be saved. The results of the measured tracks are then offset against each other to determine the wear.

Gap measurement of plastic profiles
Successful installations in the following countries

More precision for added value
Performance and quality, as well as reliability of products and services have made Micro-Epsilon Messtechnik GmbH & Co. KG one of the leading suppliers of inspection systems for optical thickness measurement used in the metal industry. Numerous, successful installations in 13 countries around the world in milling lines and processing lines speak for themselves. Developing and producing all the necessary core components such as sensors, software and measurement-specific machine building inside the company group provides unique innovative skills that are mirrored in the product portfolio of Micro-Epsilon.