Interface module
Contents

1. Safety ... 5
 1.1 Symbols Used .. 5
 1.1 Warnings ... 5
 1.2 Notes on CE Marking ... 5
 1.3 Intended Use .. 5
 1.3 Proper Environment ... 6

2. Technical Data .. 6
 2.1 Mechanics and Environment 6
 2.2 Power Supply .. 7
 2.3 Ethernet ... 7
 2.4 Sensor/Encoder Interface 7

3. Delivery ... 7
 3.1 Unpacking, Included in Delivery 7
 3.2 Storage .. 7

4. Hardware ... 8
 4.1 Connector Overview ... 8
 4.2 Pin Assignment .. 9
 4.3 LED Overview ... 11

5. Liability for Material Defects 12

6. Service, Repair .. 12

7. Decommissioning, Disposal 12

Appendix

A 1 Accessories .. 13

A 2 ASCII Communication with Sensor 14
 A 2.1 Commands Overview 14
 A 2.2 General Commands 15
 A 2.2.1 Information ... 15
 A 2.2.1.1 IF2008/ETH Information 15
 A 2.2.1.2 Sensor Information 15
 A 2.2.1.3 Parameter Overview 15
 A 2.2.2 Interfaces .. 15
 A 2.2.2.1 Ethernet Settings 15
 A 2.2.2.2 Setting Measurement Server 15
 A 2.2.2.3 Size of TCP / IP Packets 16
 A 2.2.2.4 Language Webinterface 16
 A 2.2.2.5 Operating Mode 16
 A 2.2.3 Timer .. 16
 A 2.2.3.1 Timer Frequency 16
 A 2.2.3.2 Timer Pulse Width 17
 A 2.2.4 Parameter Management 17
 A 2.2.4.1 Save Parameters 17
 A 2.2.4.2 Read Parameters 17
 A 2.2.4.3 Factory Settings 17
 A 2.2.4.4 Restoring IF2008/ETH Settings 18
 A 2.3 Sensor .. 18
 A 2.3.1 Settings .. 18
 A 2.3.1.1 Sensor Channel Baudrate 18
 A 2.3.1.2 Sensor Laser Outputs 18
 A 2.3.1.3 Trigger Outputs 18
 A 2.3.2 Functions .. 18
 A 2.3.2.1 Sensor Error Inputs 18
 A 2.3.2.2 Tunneling Sensor Commands 18
 A 2.3.3 Tunneling Sensor Commands (ASCII Version) .. 19
 A 2.4 Encoder ... 19
 A 2.4.1 Settings .. 19
 A 2.4.1.1 Encoder Interpolation Type 19
 A 2.4.1.2 Encoder Behavior at Reference 19
 A 2.4.1.3 Encoder Default Value 19
 A 2.4.1.4 Encoder Counting Direction............... 19
 A 2.4.1.5 Encoder Detection Source 20
 A 2.4.2 Functions .. 20
 A 2.4.2.1 Set Encoder Value 20
 A 2.4.2.2 Reset Reference Marks 20
 A 2.4.2.3 Reset Encoder 20
 A 2.4.2.4 Query Encoder Value 20
 A 2.4.2.5 Query Reference Counter 20
A 2.5 Digital I/O ...20
 A 2.5.1 General ...20
 A 2.5.1.1 Digital Logic...20
 A 2.5.2 Switching Inputs ...21
 A 2.5.2.1 Digital Inputs Detection Source ..21
 A 2.5.2.2 Query Digital Inputs... 21
 A 2.5.2.3 Programming Digital Input 1 ...21
 A 2.5.2.4 Programming Digital Input 2 ...21
 A 2.5.2.5 Programming Digital Input 3 ...21
 A 2.5.3 Switching Outputs ..21
 A 2.5.3.1 Programming Digital Outputs ...21
A 2.6 Measurement Data Transmission to a Measurement Value Server, Measurement Value Block........22
1. Safety
System operation assumes knowledge of the operating instructions.

1.1 Symbols Used
The following symbols are used in these operating instructions.

- **CAUTION** Indicates a hazardous situation which, if not avoided, may result in minor or moderate injury.

- **NOTICE** Indicates a situation that may result in property damage if not avoided.

- Indicates a user action.

- Indicates a tip for users.

- **Measurement** Indicates hardware or a software button/menu.

1.1 Warnings
Connect the power supply and the display / output device according to the safety regulations for electrical equipment.

- **Risk of injury**
- **Damage to or destruction of the interface module.**

The supply voltage must not exceed the specified limits.

- **Risk of injury**
- **Damage to or destruction of the interface module.**

Avoid shocks and impacts to the interface module.

- **Damage to or destruction of the interface module.**

1.2 Notes on CE Marking
The following apply to the IF2008 ETH interface module:

- EU Directive 2014/30/EU
- EU Directive 2011/65/EU, "RoHS" Category 11

Products which carry the CE mark satisfy the requirements of the EU directives cited and the European harmonized standards (EN) listed therein. The EU Declaration of Conformity is available to the responsible authorities according to EU Directive, article 10, at:

MICRO-EPSILON MESSTECHNIK
GmbH & Co. KG
Koenigbacher Str. 15
94496 Ortenburg / Germany

The measurement system is designed for use in industrial environments and meets the requirements.

1.2 Intended Use

- The IF2008 ETH interface module is designed for use in industrial and laboratory applications. It is used to convert the MICRO-EPSILON internal sensor protocol (RS422) to Ethernet.

- The IF2008 ETH interface module must only be operated within the limits specified in the technical data, see 2.

- The IF2008 ETH interface module must be used in such a way that no persons are endangered or machines and other material goods are damaged in the event of malfunction or total failure of the controller.

- Take additional precautions for safety and damage prevention in case of safety-related applications.
1.3 Proper Environment

Protection class: IP 65

Temperature range:
- Operation: 0 ... +50 °C (+32 ... +122 °F)
- Storage: +5 ... +50 °C (+41 ... +122 °F)

Humidity: 5 - 95 % (non-condensing)

Ambient pressure: Atmospheric pressure

2. Technical Data

2.1 Mechanics and Environment

Temperature range:
- Operation: 0 ... +50 °C (+32 ... +122 °F)
- Storage: +5 ... +50 °C (+41 ... +122 °F)

Protection class: IP 65 (When all plugs are connected.)

Dimensions: Interface module approx. 220 x 171 x 29, 1 mm (outer dimensions incl. mounting brackets and connectors)

Fig. 1 Dimensional drawing for IF2008 ETH interface module in mm, not to scale

- Connections:
 - 1 flange socket, 4-pin, type Binder 09 3732 500 04 for Ethernet connection
 - 1 flange connector, 5-pin, type Binder 09 3441 600 05 for power connection
 - 1 flange connector, 12-pin, type Binder 09 3491 600 12 for I/O
 - 8 flange sockets, 12-pin, type Binder 09 3492 600 12 (channels 1-8) for sensor/encoder connection

- Status LEDs:
 - 1 LED for power status
 - 1 LED for Ethernet status
 - 8 LEDs for sensor/encoder status
2.2 Power Supply
- 11 - 30 VDC power supply for interface module and sensors
- Reverse polarity protection: yes
- Galvanic isolation: no
 All GND signals are connected internally and with the housing.

2.3 Ethernet
- LAN interface 100 Mbit

2.4 Sensor/Encoder Interface
- The following sensor types can be connected:
 - ILD 1420
 - ILD 2300
 - IFC 2451 / IFC 2461 / IFC 2471
- The following encoder types can be connected:
 - Power supply +5 VDC
 - RS422 interface with quadrature signals and reference mark

3. Delivery
3.1 Unpacking, Included in Delivery
1 IF2008 ETH interface module
1 Operating instructions

ày Carefully remove the components of the measuring system from the packaging and ensure that the goods are forwarded in such a way that no damage can occur.
ày Check the delivery for completeness and shipping damage immediately after unpacking.
ày If there is damage or parts are missing, immediately contact the manufacturer or supplier.

Optional accessories are available in the appendix, see A 1.

3.2 Storage
- Temperature range storage: +5 ... +50 °C (+41 ... +122 °F)
- Humidity: 5 - 95 % (non-condensing)
4. Hardware

4.1 Connector Overview

Fig. 2 Plug-in connections IF2008 ETH interface module

<table>
<thead>
<tr>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flange socket, 4-pin, type Binder 09 3732 500 04 for Ethernet connection</td>
</tr>
<tr>
<td>2</td>
<td>Flange connector, 5-pin, type Binder 09 3441 600 05 for power connection</td>
</tr>
<tr>
<td>3</td>
<td>Flange connector, 12-pin, type Binder 09 3491 600 12 for I/O connection</td>
</tr>
<tr>
<td>4a to 4h</td>
<td>Flange socket, 12-pin, type Binder 09 3492 600 12 for sensor/encoder connection</td>
</tr>
</tbody>
</table>

Fig. 3 Overview of plug-in connections
4.2 Pin Assignment

Pin assignments, see Fig. 3, are described in the following tables below, see Fig. 4 and subsequent:

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin</th>
<th>Signal</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Ethernet TxD+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Ethernet RxD+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Ethernet TxD-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Ethernet RxD-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 4 Pin assignment of Ethernet interface

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>+24 VDC ¹</td>
<td>Power supply for interface module and sensors</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>+24 VDC ¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Shield</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5 Pin assignment of power connection

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>External entrance 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>External entrance 2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>External entrance 3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>External entrance 4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>External output 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>External output 2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>External output 3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>External output 4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>n.c.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>n.c.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Voltage output</td>
<td>LLL = +5 V, HLL = +24 V</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>GND</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 6 Pin assignment I/O interface

<table>
<thead>
<tr>
<th>Stecker</th>
<th>Pin</th>
<th>Signal IF2008ETH</th>
<th>Signal ILD 1420</th>
<th>ILD 2300</th>
<th>IFC 24xx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TRG+</td>
<td>n.c.</td>
<td>TRG+</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TRG-</td>
<td>n.c.</td>
<td>TRG-</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TxD+</td>
<td>RxD+</td>
<td>RxD+</td>
<td>TxD+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TxD-</td>
<td>RxD-</td>
<td>RxD-</td>
<td>TxD-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RxD+</td>
<td>TxD+</td>
<td>TxD+</td>
<td>RxD+</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RxD-</td>
<td>TxD-</td>
<td>TxD-</td>
<td>RxD-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+24 VDC</td>
<td>+Uₕ</td>
<td>+Uₕ and Laser ON+</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Laser ON-</td>
<td>Laser ON-</td>
<td>Laser ON-</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Multi-function output</td>
<td>Multi-function output</td>
<td>n.c.</td>
<td>TRG+ (HLL)²</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ERROR input</td>
<td>ERROR output</td>
<td>n.c.</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>+ VDC (only for encoder)</td>
<td>n.c.</td>
<td>n.c.</td>
<td>n.c.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7 Pin assignment sensor interface

1) Permissible supply voltage range 11 - 30 V
2) Bridge for HLL level on the IFC 24xx controller is set.
Fig. 8 Pin assignment encoder interface

1) Only for sensors
4.3 LED Overview

![LED Overview Diagram](image)

<table>
<thead>
<tr>
<th>LED</th>
<th>LED color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Off</td>
<td>Power supply off</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Interface module is ready for operation</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>Interface module is in bootloader/flash mode</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Initialization of the interface module</td>
</tr>
<tr>
<td>2</td>
<td>Off</td>
<td>No Ethernet connection</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>Connection between PC and interface module (100 Mbps)</td>
</tr>
<tr>
<td></td>
<td>Flashing</td>
<td>Data transmission between PC and interface module</td>
</tr>
<tr>
<td>3</td>
<td>Off</td>
<td>No sensor connected</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>No sensor/encoder selected</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>Interface set for sensor</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Interface set for sensor</td>
</tr>
</tbody>
</table>

Fig. 9 Status LEDs IF2008 ETH interface module

Fig. 10 Description of multi-color status LED
5. Liability for Material Defects

All components of the device have been checked and tested for functionality at the factory. However, if defects occur despite our careful quality control, MICRO-EPSILON or your dealer must be notified immediately.

The liability for material defects is 12 months from delivery. Within this period, defective parts, except for wearing parts, will be repaired or replaced free of charge, if the device is returned to MICRO-EPSILON with shipping costs prepaid. Any damage that is caused by improper handling, the use of force or by repairs or modifications by third parties is not covered by the liability for material defects. Repairs are carried out exclusively by MICRO-EPSILON.

Further claims can not be made. Claims arising from the purchase contract remain unaffected. In particular, MICRO-EPSILON shall not be liable for any consequential, special, indirect or incidental damage. In the interest of further development, MICRO-EPSILON reserves the right to make design changes without notification.

For translations into other languages, the German version shall prevail.

6. Service, Repair

If the interface module is defective please send us the affected parts for repair or exchange.

If the cause of a fault cannot be clearly identified, please send the entire measuring system to:

<table>
<thead>
<tr>
<th>MICRO-EPSILON MESSTECHNIK</th>
</tr>
</thead>
<tbody>
<tr>
<td>GmbH & Co. KG</td>
</tr>
<tr>
<td>Koenigbacher Str. 15</td>
</tr>
<tr>
<td>94496 Ortenburg / Germany</td>
</tr>
<tr>
<td>Tel. +49 (0) 8542 / 168-0</td>
</tr>
<tr>
<td>Fax +49 (0) 8542 / 168-90</td>
</tr>
<tr>
<td>info@micro-epsilon.com</td>
</tr>
<tr>
<td>www.micro-epsilon.com</td>
</tr>
</tbody>
</table>

7. Decommissioning, Disposal

Remove all cables on the interface module.

Incorrect disposal may cause harm to the environment.

Dispose of the device, its components and accessories, as well as the packaging materials in compliance with the applicable country-specific waste treatment and disposal regulations of the region of use.
Appendix

A 1 Accessories

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Article Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC2008-5/M12 Power supply cable, 5m</td>
<td>M12 on one side, socket, one side open ends, 5-pin, A-coded, suitable for use with robots and drag chains, 5 m long</td>
<td>29011310</td>
</tr>
<tr>
<td>SCD2520-3 Digital output cable, 3 m long</td>
<td>Digital output cable, 3 m long to connect an Ethernet/EtherCAT interface, angled 4-pin M12 plug on one side, RJ45 plug on other side, 3 m long</td>
<td>2901925</td>
</tr>
<tr>
<td>PCE1420-2/M12 Sensor cable extension, 2 m</td>
<td>M12 on both sides, plug socket, 12-pin, A-coded, assignment is identical to ILD1420 standard cable, suitable for use with robots and drag chains, 2 m long</td>
<td>29011149</td>
</tr>
<tr>
<td>SC2471-3/IF2008ETH Connector cable, 3 m</td>
<td>Connection cable to connect a confocal IFC 24xx controller, 3 m long</td>
<td>29011145</td>
</tr>
<tr>
<td>PCE2300-3/M12 Extension cable, 3 m</td>
<td>Power supply and output cable to connect an ILD2300 on the IF2008/ETH, 3 m long</td>
<td>29011279</td>
</tr>
</tbody>
</table>
A 2 ASCII Communication with Sensor

Command port 23 protocol (Telnet)

A 2.1 Commands Overview

<table>
<thead>
<tr>
<th>Group</th>
<th>Chapter</th>
<th>Command</th>
<th>Short info</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information</td>
<td>Chap. A 2.2.1.1</td>
<td>GETINFO</td>
<td>IF2008/ETH information</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.2.1.2</td>
<td>GETINFO\n</td>
<td>Sensor information</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.2.1.3</td>
<td>PRINT</td>
<td>Parameter overview</td>
</tr>
<tr>
<td>Interfaces</td>
<td>Chap. A 2.2.2.1</td>
<td>IP\n</td>
<td>Ethernet settings</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.2.2.2</td>
<td>MEA\n</td>
<td>Setting measurement server</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.2.2.3</td>
<td>MEAS\n</td>
<td>Size of TCP/IP packets</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.2.2.4</td>
<td>LANGUAGE</td>
<td>Language webinterface</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.2.2.5</td>
<td>CHANNELMODE</td>
<td>Operating mode</td>
</tr>
<tr>
<td>Timer</td>
<td>Chap. A 2.2.3.1</td>
<td>TIMERFREQUENCY\n</td>
<td>Timer frequency</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.2.3.2</td>
<td>TIMERPULSEWIDTH</td>
<td>Timer pulse width</td>
</tr>
<tr>
<td>Parameter management</td>
<td>Chap. A 2.2.4.1</td>
<td>STORE</td>
<td>Save parameters</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.2.4.2</td>
<td>READ</td>
<td>Read parameters</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.2.4.3</td>
<td>SETDEFAULT</td>
<td>Factory settings</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.2.4.4</td>
<td>RESET</td>
<td>Restarting IF2008/ETH</td>
</tr>
<tr>
<td>Sensor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settings</td>
<td>Chap. A 2.3.1.1</td>
<td>BAUDRATE</td>
<td>Sensor channel baudrate</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.3.1.2</td>
<td>LASERPOW</td>
<td>Sensor laser outputs</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.3.1.3</td>
<td>TRIGGEROUTPUT</td>
<td>Trigger outputs</td>
</tr>
<tr>
<td>Functions</td>
<td>Chap. A 2.3.2.1</td>
<td>SENSORERROR</td>
<td>Sensor error inputs</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.3.2.2</td>
<td>TUNNELn ````</td>
<td>Tunneling sensor commands</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.3.2.3</td>
<td>TUNNELn `````</td>
<td>Tunneling sensor commands</td>
</tr>
<tr>
<td>Encoder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settings</td>
<td>Chap. A 2.4.1.1</td>
<td>ENCINTERPOL</td>
<td>Encoder interpolation type</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.4.1.2</td>
<td>ENCREF</td>
<td>Encoder behavior at reference</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.4.1.3</td>
<td>ENCVALUE</td>
<td>Encoder default value</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.4.1.4</td>
<td>ENCDIR</td>
<td>Encoder counting direction</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.4.1.5</td>
<td>ENCLATCHSRC</td>
<td>Encoder detection source</td>
</tr>
<tr>
<td>Functions</td>
<td>Chap. A 2.4.2.1</td>
<td>ENCSET</td>
<td>Set encoder value</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.4.2.2</td>
<td>ENCRESET</td>
<td>Reset reference marks</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.4.2.3</td>
<td>ENCCLEAR</td>
<td>Rest encoder</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.4.2.4</td>
<td>GETENVALUE</td>
<td>Query encoder value</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.4.2.5</td>
<td>GETENCREF</td>
<td>Query reference counter</td>
</tr>
<tr>
<td>Digital I/O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>Chap. A 2.5.1.1</td>
<td>EXTLEVEL</td>
<td>Digital logic</td>
</tr>
<tr>
<td>Schalteingänge</td>
<td>Chap. A 2.5.2.1</td>
<td>EXTIN\n</td>
<td>Digital inputs detection source</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.5.2.2</td>
<td>GET\n</td>
<td>Query digital inputs</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.5.2.3</td>
<td>EXTIN\n</td>
<td>Programming digital input 1</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.5.2.4</td>
<td>EXTIN\n</td>
<td>Programming digital input 2</td>
</tr>
<tr>
<td></td>
<td>Chap. A 2.5.2.5</td>
<td>EXTIN\n</td>
<td>Programming digital input 3</td>
</tr>
<tr>
<td>Schaltausgänge</td>
<td>Chap. A 2.5.3.1</td>
<td>EXTOUT\n</td>
<td>Programming digital outputs</td>
</tr>
</tbody>
</table>

A 2.2 General Commands

A 2.2.1 Information

A 2.2.1.1 IF2008/ETH Information

GETINFO

Controller data are queried. Output as per example below:

```
$GETINFO
Name: IF2008ETH
Serial: 17000000
Option: 000
Article: 2213030
MAC-Address: 00-0C-12-02-04-3F
FPGA-Version: 16
MAC-Address: 7480
Boot-Version: 0.1.01
Version: 0.0.08
```

A 2.2.1.2 Sensor Information

GETINFOn

n = 0 ... 8

Outputs the corresponding sensor’s information.

n = 0: Information for all sensors

A 2.2.1.3 Parameter Overview

PRINT [ALL]

- No parameter: This command outputs a list of all setting parameters and its values.
- ALL: This command outputs a list of all setting parameters and their values, as well as additional information, such as GETINFO.

A 2.2.2 Interfaces

A 2.2.2.1 Ethernet Settings

IPCONFIG DHCP|STATIC [<IPAdresse> [<Netmask> [Gateway>]]]

Setting of the Ethernet interface.

- DHCP: If no DHCP server is available, a link-local address is searched for after approx. 30 seconds.
- STATIC: Sets an IP address, the net mask and the gateway in IPv4 format as xxx.xxx.xxx.xxx.

If the IP address, net mask and/or gateway are not stated, their values remain unchanged.

A 2.2.2.2 Setting Measurement Server

MEASTRANSFER SERVER/TCP [<PORT>]

Measured value output currently only on TCP server.

- The port is freely selectable between 1024 and 65535.
A 2.2.2.3 Size of TCP / IP Packets

MEASCNT_ETH <TupelCnt>

- Specifies the number of data tuples that are transmitted in one Ethernet packet. A data tuple consists of an address byte and a data byte. The format is described in Appendix, see A 2.6.
- 0: The number of data tuples is determined automatically to allow an Ethernet packet to be sent every 10 ms on average.
- 1 ... 716: Number of data tuples in an Ethernet packet. If the packets cannot be sent quickly enough, this value is exceeded.

A 2.2.2.4 Language Webinterface

LANGUAGE BROWSER|ENGLISH|GERMAN

Language of the displayed web pages
- BROWSER: The display language is determined by the web browser.

A 2.2.2.5 Operating Mode

CHANNELMODEn NONE|SENSOR|ENCODER
n= 1..8 for the sensor /encoder channels 1 to 8.

Channels can be switched between sensor or encoder mode.
- NONE: Channel is deactivated.
- SENSOR: The channel is configured to record sensor data.
- ENCODER: The channel is configured for encoder operation.

A 2.2.3 Timer

A 2.2.3.1 Timer Frequency

TIMERFREQUENCYn <Frequency>

n = 1 ... 3 for the timers 1 to 3

Defining the frequency of the internal timer

The frequency can be freely adjusted from 0.1 Hz to 12 MHz (in Hz with three decimal places). The IF2008/ETH internally selects the next possible frequency which is supported.
A 2.2.3.2 Timer Pulse Width

`TIMERPULSEWIDTHn <Pulsewidth>`

\(n = 1 \ldots 3 \) for the timer 1 to 3

Pulse width modulation of a timer cycle.

Determines the pulse width modulation of the timer signal; that is, the ratio of high to low portions of the timer signal in percent.

Pulse width modulation can be set between 0 (0 %) and 1 (100 %). Three decimal points are permitted. Internally, IF2008/ETH selects the next possible supported pulse width modulation.

A pulse width modulation of 0.5 means that the high and low portions of the timer signal have the same lengths. A pulse width modulation greater than 0.5 means that the high portion of the timer signal is longer than the low portion. A pulse width modulation smaller than 0.5 means that the high portion of the timer signal is shorter than the low portion.

![Diagram of timer frequency and pulse width](image)

F = Timer frequency
TH = Timer signal high
TL = Timer signal low
Timer pulsewidth = PW / (TH + TL)

Fig. 11 Timer frequency and timer pulse width

A 2.2.4 Parameter Management

A 2.2.4.1 Save Parameters

`STORE 1|2|3|4|5|6|7|8`

Save the current parameters under the specified number in the flash memory of IF2008/ETH.

A 2.2.4.2 Read Parameters

`READ ALL|DEVICE|MEAS 1|2|3|4|5|6|7|8`

Read the parameters under the specified number from the flash memory of IF2008/ETH.

The volume of data to be loaded must also be specified:

- ALL: All parameters are loaded.
- DEVICE: Only the basic device settings are loaded (interface parameters).
- MEAS: Only the measurement settings are loaded (all properties for the measurement).

A 2.2.4.3 Factory Settings

`SETDEFAULT [ALL] [NODEVICE]`

Reset to factory settings

- ALL: All setups are reset to factory settings. If ALL is not specified, only the current setup is reset.
- NODEVICE: Only the settings for measurements are reset, the settings for interfaces are maintained.
A 2.2.4.4 Restarting IF2008/ETH

RESET

Restarts the IF2008/ETH.

A 2.3 Sensor

A 2.3.1 Settings

A 2.3.1.1 Sensor Channel Baudrate

BAUDRATE\(n\) <Baudrate>
\(n = 1 \ldots 8\) for the sensor channels 1 to 8.

Setting the interface baud rate on the IF2008/ETH for the respective sensor channel. The baud rate can be freely adjusted from 9600 bauds to 8 Mbaud. The IF2008/ETH internally selects the next possible baud rate which is supported.

A 2.3.1.2 Sensor Laser Outputs

LASERPO\(Wn\) OFF|ON
\(n = 1 \ldots 8\) for the sensor channels 1 to 8.

Switches the connection for laser activation (pin 8)
- OFF: Laser is off
- ON: Laser is on

A 2.3.1.3 Trigger Outputs

TRIGGEROUTPUT\(n\) LOW|HIGH|TIMER1|TIMER2|TIMER3|INPUT1|INPUT2|INPUT3|INPUT4
\(n = 1 \ldots 8\) for the sensor channels 1 to 8.

Selects the source for the trigger outputs on the sensor channels (pins 1+2 or pin 9).
- LOW, HIGH: Output has this fixed state
- TIMER1 ... 3: A timer switches the output
- INPUT1 ... 4: Output has the state of a digital input

A 2.3.2 Functions

A 2.3.2.1 Sensor Error Inputs

SENSORERROR

Returns the bit-coded state of the error line (pin 10) of all sensor channels (bit 0 = error state of sensor 1, bit 1 = error state of sensor 2, ...) as a decimal value.

The return value can be between 0 (no sensor reports an error) and 255 (all sensors report an error).

A 2.3.2.2 Tunneling Sensor Commands

TUNNEL\(n\) "..."
\(n = 1 \ldots 8\) for the sensor channels 1 to 8.

Returns the command in quotation marks to the respective sensor channel. The reply is returned from the data socket.

A quotation mark in the command must be quoted with a backlash, i.e. " -> \". The same applies for a backlash itself, i.e. \ -> \.

Carriage return can be quoted with \r and line feed with \n. Arbitrary binary sequences are entered with \xhh (hh is a hexadecimal code).

Sensors with ASCII protocol (e.g. ILD2300) must contain the final \r\n within the quotation marks.
A 2.3.2.3 Tunneling Sensor Commands (ASCII Version)

TUNNELn ...

n = 1 ... 8 for the sensor channel 1 to 8.

Pure ASCII variant of tunnel command for easy entry via e.g. telnet.

The final carriage return of the tunnel command is also sent to the sensor so it recognizes the end of the command sequence.

A 2.4 Encoder

A 2.4.1 Settings

A 2.4.1.1 Encoder Interpolation Type

ENCINTERPOLn COUNTER|1|2|4

n = 1 ... 8 for the encoder channels 1 to 8.

Setting the interpolation depth of each encoder input.

- COUNTER: Normal counter mode
- 1, 2, 4: Interpolation stage (Single/double/quadruple evaluation)

A 2.4.1.2 Encoder Behavior at Reference

ENCREFn NONE|ONE|EVER|LIMIT

n = 1 ... 8 for the encoder channels 1 to 8.

Setting the effect of encoder reference track.

- NONE: Reference mark of encoder has no effect.
- ONE: Setting once (the encoder value (see ENCVALUEn) is taken over when the reference mark position is reached for the first time).
- EVER: Setting at all mark positions (the encoder value is taken over every time the reference marker position is reached).
- LIMIT: The encoder is limited between 0 and encoder value (see ENCVALUEn). When exceeding the threshold, the value is set to the opposite value (forward encoder value -> 0, backward 0 -> encoder value)

A 2.4.1.3 Encoder Default Value

ENCVALUEn <Encoder value>

n = 1 ... 8 for the encoder channels 1 to 8.

Indicates the value to which the corresponding encoder is to be set when reaching a reference mark position (or via software).

The encoder value can be set between 0 and 4294967295 (UINT_MAX).

A 2.4.1.4 Encoder Counting Direction

ENCDIRn NORMAL|REVERSE

- ENCDIR NORMAL: A is counting direction, B is counter clock
- ENCDIR REVERSE: reverse, C is always used to reset the counter

In the NORMAL setting, encoder track A determines the counting direction and encoder track B the counter clock; in the REVERSE setting, the exact opposite is true. Encoder track C is always used to reset the counter.

n = 1 ... 8 for the encoder channels 1 to 8.

Counting direction of encoder.
A 2.4.1.5 Encoder Detection Source

ENCLATCHSRCn NONE|TIMER1|TIMER2|TIMER3|SENSOR1|SENSOR2|SENSOR3|SENSOR4|SENSOR5|SENSOR6|SENSOR7|SENSOR8|INPUT1|INPUT2|INPUT3|INPUT4|SECONDREF|ANYREF

n = 1 ... 8 for the encoder channels 1 to 8.

Selects the source with which the encoder value is written in the IF2008/ETH FIFO (for continuous recording).
- NONE: No automatic encoder record.
- TIMER1 ... 3: Encoder is recorded using a timer.
- SENSOR1 ... 8: Synchronous encoder record along with data frames of a sensor.
- INPUT1 ... 4: Encoder record with rising edge of a digital input.
- SECONDREF: Encoder record when second reference mark is reached.
- ANYREF: Encoder record with each reference mark.

A 2.4.2 Functions

A 2.4.2.1 Set Encoder Value

ENCSET 1|2|3|4|5|6|7|8

Setting the encoder preset values (see ENCVALUEn) in the indicated encoder.

A 2.4.2.2 Reset Reference Marks

ENCRESET 1|2|3|4|5|6|7|8

Reset the Detection of the First Mark Position (see ENCREFn).

A 2.4.2.3 Reset Encoder

ENCCLEAR 1|2|3|4|5|6|7|8

Resetting the encoder value to 0 in the indicated encoder.

A 2.4.2.4 Query Encoder Value

GETENCVALUEn

n = 1 ... 8 for the encoder channels 1 to 8.

Asynchronous read-out of current encoder value. The return value can be between 0 and 4294967295 (UINT_MAX).

A 2.4.2.5 Query Reference Counter

GETENCREFn

n = 1 ... 8 for the encoder channels 1 to 8.

Request reference counter state.
- NONE: Reference mark not crossed since the last reset.
- FIRST: Reference mark crossed once.
- SECOND: Reference mark crossed several times.

A 2.5 Digital I/O

A 2.5.1 General

A 2.5.1.1 Digital Logic

EXTLEVEL LLL|HLL

Defines the logic level of the digital inputs/outputs
- LLL: Low level logic (Low 0.2 - 0.8 V High 4.5 - 5 V)
- HLL: High level logic (Low 0.2 - 0.8 V High 23.5 - 24 V)
A 2.5.2 Switching Inputs

A 2.5.2.1 Digital Inputs Detection Source

\texttt{EXTINLATCHSRC NONE|TIMER1|TIMER2|TIMER3|SENSOR1|SENSOR2|SENSOR3|SENSOR4}

Selects the source with which the values of the digital inputs are written in the IF2008/ETH FIFO (for continuous record).

- NONE: Digital inputs are not automatically recorded.
- TIMER1 ... 3: Digital inputs are recorded using a timer.
- SENSOR1 ... 4: Synchronous record of digital inputs along with data frames of a sensor.

A 2.5.2.2 Query Digital Inputs

\texttt{GETEXTINPUT}

Asynchronous, bit-coded, decimal read-out of current state of digital inputs (bit 0 = input 1, bit 1 = input 2, ...) as a decimal value. The return value can be between 0 and 15.

A 2.5.2.3 Programming Digital Input 1

\texttt{EXTINPUTMODE1 NONE|LASERPOW}

Function of digital input 1

- NONE: No special function
- LASERPOW: Switches the cable for laser activation in all channels (is AND-linked with LASERPOWn, i.e. only when both signals are on, laser is on.)

A 2.5.2.4 Programming Digital Input 2

\texttt{EXTINPUTMODE2 NONE|FIFOGATE}

Function of digital input 2

- NONE: No special function
- FIFOGATE: Locks the IF2008/ETH FIFO with high signal for the sensor/encoder channels 1 - 4

A 2.5.2.5 Programming Digital Input 3

\texttt{EXTINPUTMODE3 NONE|FIFOGATE}

Function of digital input 3

- NONE: No special function
- FIFOGATE: Locks the IF2008/ETH FIFO with high signal for the sensor/encoder channels 5 - 8

A 2.5.3 Switching Outputs

A 2.5.3.1 Programming Digital Outputs

\texttt{EXTOUTSRCn LOW|HIGH|TIMER1|TIMER2|TIMER3}

n = 1 ... 4 for the digital outputs 1 to 4

Selects the source for the digital outputs

- LOW, HIGH: Output has this fixed state
- TIMER1 ... 3: Output is switched using the corresponding timer.
A 2.6 Measurement Data Transmission to a Measurement Value Server, Measurement Value Block

Each data packet includes a header (28 bytes) and the following data.

<table>
<thead>
<tr>
<th>Description</th>
<th>Bit 0 ... 15:</th>
<th>Bit 16:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble (32 bits)</td>
<td>Respectively two bits describe a data channel.</td>
<td>Indicates if digital values are active.</td>
</tr>
<tr>
<td>Article number (32 bits)</td>
<td>00 = off,</td>
<td>(EXTINLATCHSRC)</td>
</tr>
<tr>
<td>Serial number (32 bits)</td>
<td>01 = Encoder,</td>
<td>Bit 17 ... 30: reserved, always 0</td>
</tr>
<tr>
<td>Flags 1 (32 bits)</td>
<td>10 = Sensor,</td>
<td>Bit 31: Indicates whether an overflow has occurred in the FIFO of the IF2008/ETH (data loss)</td>
</tr>
<tr>
<td>Flags 2 (32 bits)</td>
<td>11 = Reserved (CHANNELMODEn),</td>
<td></td>
</tr>
<tr>
<td>Number of tuples (16 bits)</td>
<td>Bit 0 ... 15:</td>
<td></td>
</tr>
<tr>
<td>Bytes per tuple (16 bits)</td>
<td>Respectively two bits describe a data channel.</td>
<td></td>
</tr>
<tr>
<td>Counter (32 bits)</td>
<td>Bit 16: Indicates if digital values are active. (EXTINLATCHSRC)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 12 Measurement value block header

Header registration Description
Preamble (32 bit) MEAS
Article number (32 bit) 2213030
Serial number (32 bit) 32 bits
Flags 1 (32 bit) Bit 0 ... 15: Respectively two bits describe a data channel. 00 = off, 01 = Encoder, 10 = Sensor, 11 = Reserved (CHANNELMODEn), Bit 16: Indicates if digital values are active. (EXTINLATCHSRC)
Flags 2 (32 bit) Reserved, permanent 0
Number of tuples (16 Bit) Number of tuples in packet
Bytes per tuple (16 Bit) 2 (each tuple consists of 2 bytes)
Counter (32 Bit) Global, continuous tuple counter for all packets. The first packet has the value 0, so it will only be incremented after output.

Fig. 13 Inputs in the measurement value block header

Data:

Each sensor byte is equipped with another address byte and stored as tuple (first address and then data byte).

<table>
<thead>
<tr>
<th>Description</th>
<th>Bits 0 ... 2:</th>
<th>Bits 3 ... 5:</th>
<th>Bits 6 ... 7:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address byte (8 bits):</td>
<td>Byte counter (0 - 7), starts from 0 after every break and stops at 7 with longer data frames from a sensor.</td>
<td>Sensor/encoder channel (0 - 7) corresponds to the channel 1 to 8</td>
<td>Data source: 00 = sensor, 01 = encoder, 10 = DigitalIn, 11 = reserved</td>
</tr>
<tr>
<td>Data byte (8 bits):</td>
<td>As received by the sensor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoder transmission is always with 32 bits, i.e. four successive tuples.

DigitalIn is transmitted with 4 bits (upper four bits are 0), i.e. one tuple.